
Reference Manual Table of Contents

Table of Contents

Introduction

Calling the utilities

awk . string processing language
basename extract base part from pathname of a file or a directory
cal . display the calendar for a month or a year
cat .concatenate files
cb .C beautifier
cmp .file binary comparison
comm . look for common lines in two files
cp . copy files and directories
cut . cut out columns or fields from files
df . statistics on disk usage
diff . compare files or directories
dtree . display tree structure of directories
du . display space each directory takes
ech . echo
ed . line editor
expand . expands tabs to blanks
findfind files with certain properties and execute commands on each
grep . search for patterns in files
head .display the head of one or several files
join . relational join of two files
ls . lists files and directories
make . update files
more . text files browser
mv . moves files and directories
od . octal (or hexadecimal) dump
opts .Set default options for The Berkeley Utilities
paste . merge files as columns of a single file
rederr . redirect error output of commands
rm . remove files and directories
sed .stream editor
sort . sort files

The Berkeley Utilities V2.0 i

Table of Contents Reference Manual

split . split a file into smaller pieces
tail . display the end of a file
tee .pipe connection and derivation
touch .update file timestamp
tr . translate stdin to stdout
unexpand . compresses to tabs runs of blanks and tabs
uniq . weed out or find repeated lines
wc . count words and lines
which . find which version of a program is active
xstr . extract character strings from C programs

Appendix: Regular Expressions

c© Copyright OPENetwork and PMC 1989–2001. All rights reserved.

ii The Berkeley Utilities V2.0

Reference Manual Introduction

The Berkeley Utilities are a set of UNIX 1 like utilities for MS-DOS2. They
have been developed by P.M.C. (a software company from Paris, France) for
its internal use, because there was no available package covering the same
needs. It is not as complete a set of UNIX commands as can be found in some
other packages (e.g. MKS) but it contains some useful utilities you don’t
find elsewhere (e.g. cb, xstr). At the time they were written, there was
no port to MS-DOS of the GNU utilities either. The Berkeley Utilities have
been maintained because we make constant use of them (for instance they
now work with long filenames under WIN95/98, and df can understand multi-
gigabyte partitions). Some functional advantages over other sets of utilities
are described in the next paragraph. Compared to the GNU utilities, our
utilities have the advantage that they are much smaller (20K on average
instead of 100K). Compared to MKS utilities, they have the advantage that
each utility is self contained (it can run separately without any other support
file, and each utility contains an help screen).

The particular advantages of our utilities come from our design goals:

• Since we had to rewrite for MS-DOS the UNIX utilities, we decided to
do them right: you will find any useful option you ever had on any UNIX

system, and often new options which make sense and increase the power
of the package. People who have been using our package, when going (or
coming back to) UNIX often wish our extra options would work there (we are
considering alleviating their suffering by porting our commands to UNIX !).
If you are a UNIX user, look at our extra options on cp, mv, ls and others;
you will see what we mean!

• We also decided to use the advantages of working in MS-DOS when they
exist, e.g. the use of video attributes to make displays clearer.

• Since we believe that using combinations of UNIX commands to do small
(or big jobs) is a powerful way to work, which we wish to teach to others,
we also are aiming our package to all PC users, and made a special effort to
provide on-line help and tutorial information. You will learn a new way to
work, and it will be an ever useful knowledge (at least until UNIX dies, which
won’t be tomorrow).

1 UNIX is a trademark of Novell
2 MS-DOS and WINDOWS are trademarks of Microsoft Corporation

The Berkeley Utilities V2.0 iii

Introduction Reference Manual

• We wanted our utilities to be self-contained, and able to be used indi-
vidually without going through any installation procedure. Each utility is
self-contained without any extra files needed, and has a help screen (usually
enough to get by, excepted for the more ambitious utilities such as awk and
make).

At this stage, if you are new to UNIX, we recommend that you go through
our User’s Manual, and use our integrated help. We recommend the following
books to help you along:

- “The UNIX programming environment”, by Kernighan and Plauger.
- For awk “The AWK programming language”, by Aho, Weinberger and

Kernighan.
If you are a UNIX wizard look in our man pages, try everything and enjoy

(man refers to the reference manual, which in UNIX is available on-line by
running a program called man).

Jean MICHEL

iv The Berkeley Utilities V2.0

Reference Manual Calling the utilities

Command line handling:

All The Berkeley Utilities can apply transformations to the command line,
doing their best to emulate the behavior of shells under UNIX, insofar as
MS-DOS allows it:

• Arguments prefixed with ‘-’ are options. An option is defined by the
character following the ‘-’ and may or may not take a parameter. As
in UNIX, the options are case sensitive, which means that the command
ls -t has a different meaning than the command ls -T. When the op-
tion takes a parameter, the parameter may be mandatory, in which case
it may be separated from the option by spaces, or it may be optional, in
which case it must follow the option immediately. An option standing
alone may be followed by (bundled with) another option without sepa-
rating space and ‘-’ character, e.g., if - s and - x are options without
parameters, those options may be bundled as: -sx. Some options are
“boolean flags” (that is, it makes sense to turn them on or off). These
options can then usually be turned off by giving them followed by a ‘-’,
e.g., -s-x means take option x but turn off s (this is especially useful in
connection with an initial command line — see below).
• Options -?, -H, and, in case it has no other significance, option -h, are

taken to be a call for help: a message describing the utility usage syntax
is sent to standard output with a short explanation of the semantics of
the arguments and of the other options.
• An option of “--” is taken to end the list of options; any further argu-

ments beginning with ‘-’ will not be interpreted as options. Contrary to
usual unix behaviour, options may appear anywhere on the command
line (they do not have to be grouped at its beginning). This behaviour
may be changed by giving the option ‘-!’; then the first non-option ar-
gument will end the options (this is particularly useful in conjunction
with setting an initial command line; see below).
• “-” standing alone is not usually taken to be an option, but to be an

argument standing for standard input stdin (we adopt standard UNIX

and MS-DOS terminology: a program takes its input from stdin (usually
the terminal, but it may be redirected with ‘<’), sends its normal output
to stdout (which can be redirected with ‘>’), and sends its error output
to stderr (which cannot be redirected under MS-DOS, unless you use our
utility rederr)).
• Arguments starting with a “$” are assumed to be environment variables,

and are replaced by their value: e.g., if the autoexec.bat file included

The Berkeley Utilities V2.0 v

Calling the utilities Reference Manual

the assignment:
set INCLUDE=c:\include

“c:\include” will be substituted for “$INCLUDE”. If the variable is im-
mediately followed by characters allowed in identifiers, curly brackets
must be used: if the environment variable “MAKEFLAGS” has been as-
signed the value “ei”, “eid” will be substituted for “${MAKEFLAGS}d”.
The following variations are also understood:

- ${x-z} stands for the value of environment variable x if x has been
defined, else for the string z. E.g., by anticipation on the following
paragraph on command substitution, ${HOME-‘cd‘} stands for the
value of environment variable HOME if HOME has been defined, and
else for the name of the current directory.

- ${x=z} is like the previous case, but in addition if x had not been
defined, it is now assigned value z until the utility ends.

- ${x?z} stands for the value y of environment variable x if x has
been defined, else message z is sent to standard output, and the
utility aborts.

- ${x+z} stands for z if x has been defined, else for the empty string.
• Another substitution mechanism is applied to arguments surrounded by

backquotes “‘”, called command substitution. First, the text inside the
“‘”s is executed as a command, then its standard output is inserted in
the command line, after substituting spaces for imbedded newlines, and
after stripping trailing newlines.
• Finally, an argument including a “*”, a “?” or a “[” is taken to be a

file specification pattern, and expansion is applied: its place is taken by
the list of actual files whose name matches the pattern according to the
following rules:

- The star “*” stands for any number (0 included) of characters except
“\”, “/”, “.”.

- The question mark “?” stands for exactly one character not in “\”,
“/”, “.”.

- One or more characters surrounded by “[]” stand for exactly one of
the surrounded characters. If the character following “[” is “!”, the
form stands for exactly one character not in the set of the characters
between the “!” and the “]”. Inside the “[]”, after the possible
initial “!”, a sequence like a-p stands for the set of characters whose
ASCII code is between those of a and p.

- A “.” ending the pattern is ignored.
- “/” et “\” are both acceptable as delimiting directories in a path

name.

vi The Berkeley Utilities V2.0

Reference Manual Calling the utilities

- Finally, the sequence “//” matches any number of consecutive di-
rectory names in a pathname.

note. The sequence “\\” was also used in earlier versions of the The Berke-
ley Utilities for the same purpose. This has been made obsolete, in
order to avoid conflict with the names of network drives.

For example,
[c-e]://[!a]*.c

means all the files whose filename start with a letter different from a,
which have an extension of c, and which are anywhere (“//” means “any
number of directories below the root”) in hard disk c:, d: or e:.

NB1: Those patterns are similar in some ways to regular expressions. But
there is no closure operator, “?” plays the part of “.”, “*” is equiva-
lent to “[^.\]*”, in character classes the complement operator is “!”
instead of “^”.

NB2: Divergences from UNIX file specification patterns: under UNIX, “.”
has no special properties except as the first character of a filename.
Under MS-DOS, a file or directory name may contain at most one
“.”, and a name without a “.” designates the same file as the same
name with the “.” appended. Moreover a name can have at most 8
characters before a “.” and 3 characters after it.

NB3: Divergences from MS-DOS : a name with less than 8 characters be-
fore an explicit or implicit “.” is not supposed to be completed to 8
characters by spaces. Thus the behavior of “?” differs from MS-DOS

expansion where it sometimes ends up standing for one or no charac-
ter. On the other hand, patterns where an initial “*” is followed
by non-special characters are handled as you would expect (as in
UNIX), whereas MS-DOS sees no difference from “*” alone. For in-
stance, The Berkeley Utilities see *A.* as all the files whose filename
ends with an A, while MS-DOS does not distinguish *A.* from *.*.

NB4: Be aware that patterns can only stand for existing files. Since the
syntax of cp and mv are different from that of copy and rename,
commands such as

copy *.bin *.obj

have no equivalent with The Berkeley Utilities. Nevertheless, an equiv-
alent result may be obtained by a combination of some command
repetition mechanism (such as the MS-DOS for command) and the
basename utility:

for \%i in (*.bin) do cp \%i ‘basename \%i .bin=.com‘

(note that %i must be replaced by %%i in a batch file).

The Berkeley Utilities V2.0 vii

Calling the utilities Reference Manual

Installation and Video Attributes:

The installation is an easy procedure: just copy the files from the distri-
bution disks to a subdirectory on your hard disk, then place that directory on
the path before the one which contains MS-DOS. In recent WIN95/98 systems
you may have trouble doing that since WIN95/98 will automatically prepend
its COMMAND subdirectory to the path. On such systems, to use the Berkeley
find and more the best way is to rename the same-name commands in WIN-
DOWS/COMMAND to a different name. Since ECHO, a built-in command, cannot
be renamed, we named ours ech.

The Berkeley Utilities will work independently of each other and without
any installation. They are easily configurable with the help of the supplied
program opts.exe. This program sets an initial command line for any utility.
For instance

opts rm "-i -r"

would set the initial command line of rm to -i -r, which means that on any
future call to rm, the options -i -r will be prepended to the actual command
line. This could be used to give default arguments, in addition to setting
default options. The mechanism is such that the part of the command line
thus given does not count in the DOS limit of 128 characters for the command
line and may be arbitrarily long.

The Berkeley Utilities use different video attributes in order to highlight
the key parts of their output. Most of The Berkeley Utilities use 3 attributes,
but some (more, for instance) use many more. Those attributes may be se-
lected globally for all utilities by assigning values to the environment variable
“VATTR” in the following way:

set VATTR=attribute0-attribute1-attribute2-. . . attributen

attributei being the middle part of an ANSI ‘Set Graphic Rendition’ Escape-
sequence, e.g., a sequence formed thus:
〈Esc〉[p1;p2;. . . pkm

stripped of initial “〈Esc〉[” and of final “m”. The parameters pi are as de-
scribed in MS-DOS reference manuals, for instance:

set VATTR=44;36;1-44;33;1-44;35;1-40;36;1-40;31;1-40;37;1-42;30-42;33;1

selects 8 attributes:
bright cyan on blue, bright yellow on blue, bright magenta on blue, bright
cyan on black, bright red on black, white on black, black on green, bright
yellow on green.

viii The Berkeley Utilities V2.0

Reference Manual Calling the utilities

The following example:
set VATTR=0-1-4-7;1-7-7;4

selects 6 attributes for a monochrome screen (hard to find nowadays):
normal on black, highlighted on black, underlined black, grey on white, black
on white, inverse underlined. The attributes can be set for a single utility
using the ‘-@’ option which takes as argument a string following the same
syntax as VATTR. The usual way to proceed would be to set this option in
an initial command line via opts. The command ‘opts -e’ may be used
to edit interactively the initial command line and has support for selecting
attributes from a menu.

When the utilities output is redirected to a file, attributes are normally
not output. Nevertheless, if the option ‘-&’ is given, output to a file and to
the terminal is treated the same way. This is specially useful if the output is
piped to a browser which can emulate ansi.sys, such as more. For instance,
to look at leisure at strings found, type

grep -& thing *.c |more

The method of assigning the value ANSI to the environment variable FATTR
which was in the version 1 of The Berkeley Utilities is now obsolete (the above
method is better since it can be controlled on each use).

There is a way to tell the utilities not to use ANSI attributes: just do
“set VATTR=NO”.

Command spawning from The Berkeley Utilities :

In many cases, (command substitution, make methods, “!” commands
of ed and more, -exec predicate of find, etc. . .). utilities have to spawn
some other command. The normal way to do this is to spawn a subshell,
where under MS-DOS the shell to be spawned is given by the value of the
environment variable “COMSPEC”. Actually, if it is possible, the commands
are spawned directly without a subshell intervening. This is useful for the
utilities which need to know the exit status of spawned commands (make,
find, . . .), since the standard MS-DOS shell (command.com) does not make
this information available. A command can be spawned directly if it is not
an internal MS-DOS command and does not use pipes (|). Otherwise the
command is spawned via a subshell and will always be assumed to have
succeeded.

The Berkeley Utilities V2.0 ix

Reference Manual awk

String-processing language

Synopsis: awk [-Fc] -f program [files]

or awk [-Fc] "program" [files]

Description:

If you are not already familiar with awk, it is strongly recommended that
you read the excellent 1988 Addison-Wesley book “The AWK Programming
Language”, by Aho, Kernighan and Weinberger who gave the language its
“awk”ward name. The following is not intended to serve as a tutorial for the
language.

The awkprogram to execute is in the file specified as argument to the -f
option, or is the first argument on the command line if there is no -f option.
The file arguments processed by the program are considered as a sequence
of records separated by record-separator characters, each record itself being
a sequence of fields separated by field-separator characters. By default, the
record-separator is the newline, so records are consecutive lines of the file,
and the field-separator is the space. These defaults may be changed as will
be seen below. If the field-separator is the space, as a special convention
the 〈Tab〉 and the newline are also field-separators (this is specific to the
space). An “awk” program consists in a sequence of pairs “condition { actions
}”. For each record in each file argument which matches the condition the
corresponding actions are executed. A missing condition is considered to
match every record, and a missing action is equivalent to the action {print}
which prints the current record.

The actions are written in a language whose syntax is similar to that
of the language C, but whose semantics are quite different: Variables can
hold numeric or string values, or be arrays, but there are no declarations.
A variable may indifferently hold numeric or string values; the conversion
between these is automatically performed in any context where it is neces-
sary; numeric values are floating-point numbers. On the other hand, the first
occurence of a variable decides if it will be an array or scalar (if it is indexed
or not in this first occurence) and then its nature (scalar or array) will be
the same for the rest of the program. Array indices may be any scalar value,
which provides a kind of associative memory. Operators are those of the
C language when they make sense. Structured programming constructs are

The Berkeley Utilities V2.0 1

awk Reference Manual

available as in C by using the keywords for, while, if and else. A variant
of for is provided which loops over an associative array. The language con-
tains a few built-in variables and functions. The conditions are built using
boolean operators from relational expressions and regular expressions (look
in the Appendix for a definition of regular expressions; the regular expres-
sions currently do not have the alternation operator, they will be extended
in a later version). In addition a condition may be a pair of conditions as
described above, separated by commas. Such a condition holds between the
first line satisfying the first condition and the next line satisfying the second
condition, and again between such pairs of lines until the end of the file.

Formal Grammar of awk:

(In the documentation which follows, “iff” is an abbreviation for “if and
only if”).

〈program〉
:= 〈begin〉 〈body〉 〈end〉

〈begin〉
:= BEGIN { 〈actions〉 }

BEGIN is a special condition which declares 〈actions〉 to perform be-
fore starting to read the first file argument.

| nothing

i.e. no initial 〈actions〉.

〈body〉
:= 〈body〉 〈action-condition〉

| 〈body〉 〈action-condition〉 〈terminator〉

| nothing

The 〈body〉 of the program is a sequence of 〈action-condition〉s, sep-
arated by “;” or newlines. The 〈body〉 is executed by applying
successively each 〈action-condition〉 to each records of each file.

〈end〉
:= END { 〈actions〉 }

END is a special condition which declares the 〈actions〉 to perform
after processing the last record of the last file.

| nothing

i.e. no final 〈actions〉.

2 The Berkeley Utilities V2.0

Reference Manual awk

〈action-condition〉
:= 〈pattern〉

Print each record which matches the 〈pattern〉.

| 〈pattern〉 { 〈block〉 }
For each record matching the 〈pattern〉, execute actions in 〈block〉.

| 〈pattern〉 , 〈pattern〉
Wait for a record matching the first 〈pattern〉, then print each record
until the next record matching the second 〈pattern〉, and so on.

| 〈pattern〉 , 〈pattern〉 { 〈block〉 }
Wait for a record matching the first 〈pattern〉, then execute the
〈block〉 of actions for each record until the next record matching
the second 〈pattern〉, and so on.

| { 〈block〉 }
For each record, execute actions in 〈block〉.

〈pattern〉
:= 〈regular-expression〉

A record matches the 〈pattern〉 iff it matches the 〈regular-expression〉.

| 〈match〉

| 〈relational-expression〉

| 〈composed-pattern〉

〈composed-pattern〉
:= 〈pattern〉 || 〈pattern〉

Alternation: a record matches the 〈composed-pattern〉 if it matches
one of the two 〈pattern〉s.

| 〈pattern〉 && 〈pattern〉
Conjunction: a record matches the 〈composed-pattern〉 if it matches
both 〈pattern〉s.

| ! 〈pattern〉
Negation: a record matches the 〈composed-pattern〉 if it does not
match the 〈pattern〉.

| (〈composed-pattern〉)
Grouping.

The Berkeley Utilities V2.0 3

awk Reference Manual

〈block〉
:= 〈block〉 〈statement〉

| nothing

〈block〉 is a sequence of 〈statement〉s, executed by successively exe-
cuting each 〈statement〉. A break, continue, next or exit state-
ment may stop execution before the end of the 〈block〉.

〈statement〉
:= 〈simple-statement〉 〈terminator〉

| if (〈condition〉) 〈statement〉 else 〈statement〉
If the 〈condition〉 is true the first 〈statement〉 is executed, else the
second one.

| if (〈condition〉) 〈statement〉
The 〈statement〉 is executed if the 〈condition〉 is true.

| while (〈condition〉) 〈statement〉
While the 〈condition〉 evaluates to true, execute the 〈statement〉.

| for (〈variable〉 in 〈variable〉) 〈statement〉
The second 〈variable〉 must be an array, and then for each element of
that array the 〈statement〉 is executed, with the first 〈variable〉 set
to the value of that element.

| for (〈simple-statement〉 ; 〈condition〉 ; 〈simple-statement〉) 〈statement〉
Execute the first 〈simple-statement〉, then loop on the sequence: eval-
uate the 〈condition〉, if true execute the 〈statement〉, then execute
the second 〈simple-statement〉.

| for (〈simple-statement〉 ;; 〈simple-statement〉) 〈statement〉
Identical to the above form except the condition is always true. This
loop can be exited only by a break, next, or exit.

| break 〈terminator〉
Get out of the current loop (the innermost one if several loops are
embedded).

| continue 〈terminator〉
Go directly to the next iteration through the current loop.

| { 〈block〉 }
Execute the 〈block〉 (see the definition of a 〈block〉 above).

4 The Berkeley Utilities V2.0

Reference Manual awk

| next 〈terminator〉
The next statement causes the current record to be abandoned, the
next record to be read and execution to resume at the beginning of
the program body.

| exit 〈expression〉 〈terminator〉

| exit 〈terminator〉
The exit statement is equivalent to the end of the last file. If an
expression follows exit, it is evaluated and its value is used as the
return code from awk.

〈condition〉
:= 〈expression〉

As in the C language, the 〈condition〉 is true iff the 〈expression〉
evaluates to a non-zero value.

| 〈relational-expression〉

| 〈match〉

| 〈composed-condition〉

〈composed-condition〉
:= 〈condition〉 || 〈condition〉

| 〈condition〉 && 〈condition〉

| ! 〈condition〉

| (〈composed-condition〉)
The syntax of 〈condition〉s is very similar to that of the 〈pattern〉s.
Note that, in contrast to C, an expression is meaningful as a condition
but the converse is not true.

〈simple-statement〉
:= print 〈list〉 〈redirection〉 〈expression〉

The items of the 〈list〉 as well as the final 〈expression〉 are evaluated as
character strings; then the items are printed, separated by the output
field-separator (variable OFS) to the file whose name is the value of
the final 〈expression〉 (this file is created if non-existent). If the file
did exist, the text replaces its contents, except that if 〈redirection〉
is “>>”, the text is appended to the file.

| print 〈list〉
Same as above, the output file being stdout.

The Berkeley Utilities V2.0 5

awk Reference Manual

| print 〈redirection〉 〈expression〉

| print

If print has no arguments, $0 (the current record) is printed.

| printf 〈list〉 〈redirection〉 〈expression〉

| printf 〈list〉
As print, but the first item in the list is interpreted as a character
string to yield a format, which is used to print the other items, with
the same conventions as in the C printf function.

| 〈expression〉

〈expression〉
:= 〈expression〉 〈term〉

〈expression〉 and 〈term〉 are evaluated to character strings and cate-
nated.

| 〈term〉

| 〈value〉 = 〈term〉

| 〈value〉 += 〈term〉

| 〈value〉 -= 〈term〉

| 〈value〉 *= 〈term〉

| 〈value〉 /= 〈term〉

| 〈value〉 %= 〈term〉
Assignment operators, which have the same meaning as the corre-
sponding operators in the C language.

〈term〉
:= 〈value〉

| (〈expression〉)

| 〈term〉 + 〈term〉

| 〈term〉 - 〈term〉

| 〈term〉 * 〈term〉

| 〈term〉 / 〈term〉

| 〈term〉 % 〈term〉

| + 〈term〉

6 The Berkeley Utilities V2.0

Reference Manual awk

| - 〈term〉
Dyadic and monadic operators, which have the same meaning and
syntax as in C.

| ++ 〈value〉

| -- 〈value〉

| 〈value〉 ++

| 〈value〉 --
Pre and post-decrementation and incrementation, as in C.

| 〈function〉 (〈expression〉)

| 〈function〉 ()

| 〈function〉
Where 〈function〉 is one of the intrinsic functions of awk(see below
the list of these functions). If there is no argument, by default $0
(the current record) is used.

| getline

getline reads the next record and returns it ($0) as its value, without
breaking the program flow as next does.

| sprintf 〈list〉
The first item in 〈list〉 is taken to be a format string. Similar to the
sprintf of the standard C library.

| substr (〈expression〉 , 〈expression〉 , 〈expression〉)
Returns the sub-string of the first 〈expression〉 which starts at the
position specified by the second 〈expression〉, and whose length is at
most the value of the third expression.

| substr (〈expression〉 , 〈expression〉)
Returns the terminal substring of the first 〈expression〉 which starts
at the position specified by the second 〈expression〉.

| split (〈expression〉 , 〈variable〉 , 〈expression〉)
Sets 〈variable〉 to an array whose elements are the substrings obtained
by splitting the first string 〈expression〉 at places where occurs the
separator which is specified by the first character of the second string
〈expression〉, and returns as result the number of elements of that
array.

The Berkeley Utilities V2.0 7

awk Reference Manual

| split (〈expression〉 , 〈variable〉)
Like the previous form, but using as separator field-separator char-
acter specified by the built-in variable FS.

| index (〈expression〉 , 〈expression〉)
returns an integer, the position of the first occurence of the second
string 〈expression〉 as a substring of the first one; returns 0 if there
is no occurence.

〈value〉
:= 〈variable〉

| 〈variable〉 [〈expression〉]
〈variable〉 must be an array, or must be mentioned here for the first
time. 〈expression〉 must evaluate to a scalar value.

| 〈field〉

| number

A number is a floating-point number written as a sequence of digits,
with an optional decimal point and exponent.

| string

A string constant is a sequence of characters between double quotes
‘"’. The “\” character may be used to quote the next character, al-
lowing to specify characters impossible to put in the string otherwise:

\\: A \.
\": A double quote ".
\n: A newline.
\t: A 〈Tab〉.

〈field〉
:= $ 〈expression〉

〈expression〉 must evaluate to a non-negative integral value. $0 is
the current record, and cannot occur on the left of an assignment
operator. $n where n != 0 represents the nth field, and can be
assigned to as any other.

〈function〉
:= length

The function length gives back the length of its argument ($0 by
default) interpreted as a character string.

8 The Berkeley Utilities V2.0

Reference Manual awk

| log

logarithm function.

| int

floor function.

| exp

exponential function.

| sqrt

square root function.

These functions interpret their argument ($0 by default) as numbers,
and return what their name implies.

〈variable〉
:= NF

The variable NF holds the number of fields of the current record.

| NR

NR holds the ordinal number of the currently processed record.

| FS

FS holds the field-separator character (this character is taken from
the first character of the value of FS interpreted as a string). By
default this character is the space, unless the option -F has been
given.

| RS

RS holds the record-separator character, which by default is the new-
line. If “RS” is an empty string, the records will be separated by an
empty line.

| OFS

OFS holds the output field-separator character which, by default, is
the space.

| ORS

ORS holds the output record-separator character which, by default, is
the newline.

| OFMT

OFMT holds the default output format for numbers which, by default,
is “%.6g”.

The Berkeley Utilities V2.0 9

awk Reference Manual

| FILENAME

Holds the current filename.

| identifier

An identifier is a sequence of letters, digits and “_”, not beginning
with a digit, and not one of the names of built-in functions and
variables. Variables are initialized to the empty string (i.e. this is
the value they have when used before being assigned to).

〈regular-expression〉
:= /re/

Look at the Appendix for the syntax of regular expressions.

〈match〉
:= (〈match〉)
| 〈expression〉 ~ 〈regular-expression〉

True iff 〈expression〉 matches 〈regular-expression〉.
| 〈expression〉 !~ 〈regular-expression〉

True iff 〈expression〉 does not match 〈regular-expression〉.

〈relational-expression〉
:= 〈expression〉 == 〈expression〉
| 〈expression〉 != 〈expression〉
| 〈expression〉 >= 〈expression〉
| 〈expression〉 <= 〈expression〉
| 〈expression〉 > 〈expression〉
| 〈expression〉 < 〈expression〉
| (〈relational-expression〉)

These operators have the same meaning as in the C language.

〈list〉
:= (〈list〉)
| 〈list〉 , 〈expression〉
| 〈expression〉

〈redirection〉
:= >

| >>

10 The Berkeley Utilities V2.0

Reference Manual awk

〈terminator〉
:= ;

| newline

Newlines are not irrelevant as in C, since they can be used to mark the
end of a statement, but they are allowed after if(. . .), else, while(. . .),
and for(. . .). Outside of character string constants or regular expressions,
“#” signals the beginning of a comment, and the rest of the line is ignored.

Option:

The option -Fc allows to change the default field-separator character to
c. If c is “t”, it is understood as 〈Tab〉.

Examples:

• To count the number of lines of a file (same as wc -l file):

awk "END{print NR}" file

• To print a file, each line prefixed with its line number:

awk "{print NR, "’$’"0}" file

or more reasonably, place the following line in a separate awk program:

{print NR, $0}

• To print all lines of a file which exceed 79 characters:

awk "length > 79" file

• To print all lines of a file containing december in French or English (equiv-
alent to “grep \<[Dd][eé]c file”):

awk "/\<[Dd][e]c/" file

The Berkeley Utilities V2.0 11

awk Reference Manual

• To find files in the current directory dated between 21th and 31th of
december:

ls -T | awk "$1 ~ /Dec/ && $2>20{print $4}"

Let us follow how example 5 works. First, it is equivalent to running awk on
the output of ls -T1 (the option -1 of ls is implied in case of a pipe). A
typical line of that file looks like:

Dec 25 21:07 c:\bin\awk.exe

So when processing the file, $1 is the month (here “Dec”), $2 is the day
(here “25”), $3 is the hour (or the year for files more than 6 months old),
(here “21:07”), $4 is the filename (here “c:\bin\awk.exe”). “$1 ~ /Dec/”
selects lines for december, and “$2 > 20” selects amongst those the ones
whose day is greater than 20 (the operator “>” forces the second field to be
interpreted as a number). The action for selected lines is to print the fourth
field, i.e. the filename.

• To count the number of files dated from each month (this example uses
an associative array):

ls -T | awk -f count

where count contains
$1~/Jan/{n["January"]++}

$1~/Feb/{n["February"]++}

$1~/Mar/{n["March"]++}

$1~/Apr/{n["April"]++}

$1~/May/{n["May"]++}

$1~/Jun/{n["June"]++}

$1~/Jul/{n["July"]++}

$1~/Aug/{n["August"]++}

$1~/Sep/{n["September"]++}

$1~/Oct/{n["October"]++}

$1~/Nov/{n["November"]++}

$1~/Dec/{n["December"]++}

END{ for (m in n)

{ if (n[m] > 1) NUM="s"

else NUM=""

print m ":",n[m],"file" NUM

}

}

12 The Berkeley Utilities V2.0

Reference Manual awk

Error Messages:

can’t open ‘xxx’

The program file, or an argument file, or a redirection file could not be opened.

error in program

syntax error

lexical error

Errors found in the awkprogram.

xxx is not an array

The variable after “in” in the 2nd form of a “for” loop is not an array.

can’t set $0

$0 has occured on the left of an (= += -= *= /= %=).

funny variable xxx

illegal arithmetic operator

illegal assignment operator

illegal boolean operator

illegal function type

illegal jump type

illegal relational operator

illegal statement

illegal transformation to statement

illegal reference to array xxx

An array as been referenced in a context where a normal variable was ex-
pected.

newline in string

A string constant started with “"” has not been closed before the end of the
line.

newline in regular expression

A regular expression started with “/” has not been closed before the end of
the line.

regular expression: missing ‘]’

The Berkeley Utilities V2.0 13

awk Reference Manual

A character class opened with “[” in a regular expression has not been closed
before the end of the line.

not enough arguments in printf(xxx)

printf or sprintf does not have the number of argument corresponding to
the format.

trying to access field n

The expression following a “$” has a value which does not correspond to the
number of a field of the current record.

unexpected break, continue or next

A break, continue, or next has been found at the topmost program level.

too many output files n

The number of files to which output may be redirected is currently limited
to 10.

out of memory

format item xxx... too long

record ‘xxx’ has too many fields

record ‘xxx’ too long

string xxx... too long to print

string too long

yacc stack overflow

Various resources have been exhausted.

Portability:

New features of awk introduced in UNIX version V.3 are not yet imple-
mented.

14 The Berkeley Utilities V2.0

Reference Manual basename

give base part of a pathname

Synopsis: basename file

or basename file [. . . file] suffix

Extracts the ‘filename’ part from a full pathname.

Description:

In the first form, basename strips from a pathname logical unit and
directory specifications. In the second form basename performs this operation
on all its arguments excepted the last which is interpreted as a suffix, and
stripped from filename arguments which end with it. If this suffix has the
form s1=s2, all arguments ending with s1 will have this final s1 replaced by
s2.

Examples:

C:>basename c:\bin\abc.exe

abc.exe

C:>basename c:\bin\abc.exe c:\bin\other.bak .exe

abc

other.bak

C:>basename c:\bin\abc.exe c:\bin\other.bak .exe=.c

abc.c

other.bak.c

Notes:

basename is particularly useful in conjunction with the “command sub-
stitution” performed by The Berkeley Utilities.

For instance, to rename all files ending in .bin to .com you may use the
for command of MS-DOS as follows:

for %i in (*.bin) do mv %i ‘basename %i .bin=.com‘

And to move to directory target all C source files such that there exists
an executable with the same name:

mv ‘basename *.exe .exe=.c‘ \target

See Also:

find.

The Berkeley Utilities V2.0 15

cal Reference Manual

Display the calendar for a month or a year

Synopsis: cal [[month number] year number]

Prints the calendar for a given month of a given year, or if the month is
omitted, for all months of a given year; if given with no arguments, gives the
calendar of current month.

Year may be between 1 and 9999; month must be between 1 and 12.

Notes:

To learn something about the history of England, try cal 9 1752.
Here is the output of cal 7 1993

July 1993

Su Mo Tu We Th Fr Sa

1 2 3

4 5 6 7 8 9 10

11 12 13 14 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

16 The Berkeley Utilities V2.0

Reference Manual cat

concatenate files

Synopsis: cat file [. . . file]

Description:

cat writes the concatenation of all the argument files one after the other
on stdout . If no argument has been given, or for each occurence of the
argument “-”, cat takes its input from stdin.

Examples:

• The following two lines are equivalent:

C:>cat abc

C:>type abc

• A way to add two lines to the beginning and one line to the end of a text
file without using an editor:

C:>cat - autoexec.bat - >autoexec.new

set include=c:\msc\include;c:\msc\include\sys

set lib=c:\msc\lib

^Z

set temp=c:\tmp

^Z

C:>mv autoexec.new autoexec.bat

^Z represents 〈Control-Z〉 which informs MS-DOS that an end of file was
entered from the console.

Bugs:

Since the same buffer is used for input and output, if one of the files
being concatenated is also used as stdout , the contents of the file will be
destroyed. In order to append file2 at the end of file1, type:

cat file2 >> file1

See Also:

cp, mv, more.

The Berkeley Utilities V2.0 17

cb Reference Manual

C beautifier

Synopsis: cb [options] [input file [output file]]

cb takes as input a C source file, and rewrites it according to the options
specified on the command line.

Description:

By default, cb works on stdin and stdout. cb beautifies a C source file
according to your programming style, organizing especially the output of
blocks. Preprocessor commands and declarations outside of a function are
not changed.

Options:

The following options are available on the command line:

-in n is an integer, value of the indentation used after keywords. By
default, 2.

-c Same level of indentation for a closing curly bracket and its corre-
sponding keyword. By default, the closing curly bracket is on the
same level as the opening one.

-s The statement immediately following a keyword will appear on the
same line. By default, it appears on the following line, beginning at
the next level of indentation.

-o The opening curly bracket appears on the same line as its correspond-
ing keyword. By default, it appears on the next line.

-O The opening curly bracket is on the line following the keyword, be-
ginning at the next level of indentation. By default, it keeps the same
level as the keyword.

-n An else or a while immediately following a closing curly bracket
appears on the same line. By default, every closing curly bracket is
followed by a newline.

-r The first statement inside of a block appears on the same line as the
opening curly bracket.

-R The statements inside of a block appear on the same level of indenta-
tion as the opening curly bracket. By default, they begin at the next
level.

18 The Berkeley Utilities V2.0

Reference Manual cb

Examples:

Let us have a look at the output of 3 cb options working on the same input
file.

C:>cat fopenp.c

FILE *fopenp (path, fn, fnb, mode)

register char *path;char *fn, *fnb, *mode;

{ ...

if (*fn == ’\\’) if (fd = fopen(fn, mode))

{ strcpy(fnb, fn);return (fd);}

else return(NULL);

do { while (*path != ’;’)*dst++ = *path++;

if (dst != fnb) *dst++ = ’\\’;

while (*dst++ = *src++);

if (fd = fopen (fnb, mode))return (fd);}

while (*path++);return (NULL);}

Default option:

C:>cb fopenp.c

gives as output:

FILE *fopenp (path, fn, fnb, mode)

register char *path;char *fn, *fnb, *mode;

{ ...

if (*fn == ’\\’)

if (fd = fopen(fn, mode))

{

strcpy(fnb, fn);

return (fd);

}

else

return(NULL);

do

{

while (*path != ’;’)

*dst++ = *path++;

if (dst != fnb)

*dst++ = ’\\’;

The Berkeley Utilities V2.0 19

cb Reference Manual
while (*dst++ = *src++);

if (fd = fopen (fnb, mode))

return (fd);

}

while (*path++);

return (NULL);

}

Options -o and -n joined:

C:>cb -on fopenp.c

gives as output:

FILE *fopenp (path, fn, fnb, mode)

register char *path;char *fn, *fnb, *mode;

{ ...

if (*fn == ’\\’)

if (fd = fopen(fn, mode)) {

strcpy(fnb, fn);

return (fd);

} else

return(NULL);

do {

while (*path != ’;’)

*dst++ = *path++;

if (dst != fnb)

*dst++ = ’\\’;

while (*dst++ = *src++);

if (fd = fopen (fnb, mode))

return (fd);

} while (*path++);

return (NULL);

}

Options -r and -s joined:

C:>cb -rs fopenp.c

gives as output:

20 The Berkeley Utilities V2.0

Reference Manual cb

FILE *fopenp (path, fn, fnb, mode)

register char *path;char *fn, *fnb, *mode;

{ ...

if (*fn == ’\\’) if (fd = fopen(fn, mode))

{ strcpy(fnb, fn);

return (fd);

}

else return(NULL);

do

{ while (*path != ’;’) *dst++ = *path++;

if (dst != fnb) *dst++ = ’\\’;

while (*dst++ = *src++);

if (fd = fopen (fnb, mode)) return (fd);

}

while (*path++);

return (NULL);

}

Error Messages:

else not following an if

unbalanced curly brackets

Can be printed in case of a syntax error. But be careful — cb is not a syntax
analyzer !

Bugs:

If you ask for an output with both the options -r and -o, you won’t get
exactly what you expect: if there are nested blocks, the shift to the right of
the output would very soon get unreadable.

Portability:

All options are enhancements (UNIX version cannot be configured).

The Berkeley Utilities V2.0 21

cmp Reference Manual

compare binary files

Synopsis: cmp [options] file1 file2 [offset1] [offset2]

cmp compares file1 (starting at byte offset1 if given) to file2 (starting
at byte offset2 if given). A file given as ‘-’ is taken to be standard input.
Wildcards can be used to specify two files. By default, nothing is printed if
files are identical; byte and line number of first difference are given otherwise.
If one file is identical to some initial part of the other, it is reported.

Options:

-l long mode: all differences are reported (not only the first one).

-s silent mode, nothing reported in any case. Only the exit status indicates
the result of the comparison:

0 for identical arguments 1 for differences 2 for errors.

See Also:

diff.

22 The Berkeley Utilities V2.0

Reference Manual comm

Look for common lines in two files

Synopsis: comm [options] file1 file2

comm works on two already sorted files, and writes its result to stdout.

Description:

The default is to give the lines common to the two files.

Options:

Two options are allowed on the command line:

-1 Asks comm to give as output the lines which are only in file1.

-2 Asks comm to give as output the lines which are only in file2.

Examples:

C:\>ls -1 \util\src >files.c

C:\>ls -1 a:util\src >files.a

C:\>comm files.c files.a

Since, by default, the output of ls is sorted alphabetically, comm gives the
list of files which belong to both subdirectories.

C:\>comm -2 files.a files.c

lists the files which appear only in the subdirectory C:\util\src .

See Also:

diff, sort, uniq.

The Berkeley Utilities V2.0 23

cp Reference Manual

Copy files and directories

Synopsis: cp [options] source target

or cp [options] file|dir . . . file|dir dir

cp copies files or directories matched by the pathnames given as argument.

Description:

There are two forms of the command:
• short form: there are only two arguments, and furthermore both argu-

ments consist of one file, or both of one directory, or the second argument
is a new name. The first argument is copied over the second (target).
• long form: the last argument is a directory (target) and all other argu-

ments are copied to that target directory.
Watch out when using wild cards (like file.*), as the target (the last argu-
ment) must expand to at most one name.

Options:

The possible options on the command line are:

-r Allows cp to copy (and possibly overwrite) non-empty directories (if
not given, only empty directories are copied or overwritten).

-m When copying directories, merges the source with the target (instead
of overwriting the target).

-v Gives on stdout a report on copied files.

-f Do not ask confirmation before overwriting read-only files (by default
the authorization of the user is asked).

-i Asks confirmation before overwriting any file or directory.

-I Asks confirmation before copying any file or directory. This option
implies the -i option.

When the options -i or -I are given, the only answers allowed are:
n: continue, do not overwrite or copy.
q: leave.
g: (go) stop asking questions.
y: overwrite or copy.
s: answer valid only for a directory. Overwrite or copy without asking

further confirmations for files or sub-directories of this directory.

24 The Berkeley Utilities V2.0

Reference Manual cp

Examples:

cp -rvm a:dbaseiv c:\

Add the contents of directory dbaseiv from diskette a: to the hard disk
c: (and do not overwrite, if this directory already exists on c:, the files
in it whose name does not conflict with a name in a:dbaseiv); inform on
performed actions (option -v).

Notes:

MS-DOS’s COPY is capable of preventing the copying of a file over itself
in simple cases, but will fail in more complicated cases (and trash the file):

C:\>COPY top.map top.map

File cannot be copied onto itself

0 file(s) copied

C:\>COPY t*.map top.map

1 file copied.

cp does not make that kind of mistake.

The Berkeley Utilities V2.0 25

cut Reference Manual

cut out selected fields

Synopsis: cut -clist [files]

or cut -flist [options] [files]

cutcuts out columns or fields from each line of the files entered as argu-
ments according to the options specified by the user on the command line.
If no files are specified or the file name -, cutworks on stdin.

Description:

cutlooks at every line of files and copies to the standard output only
the fields (option -f) or characters (option -c) specified in the argument
list . list must immediately follow the option (no space allowed). list is a
comma-separated list of integers or integer ranges, given in increasing order.
A range is specified by a - as in 8-12. A - not preceded by a number makes
cutconsider that the range begins with the first character or field. A - not
followed by a number means that the range ends at the end of the line, with
the last character or field.

Options:

One of the two following options must appear on the command line:

-clist list represents character positions, each integer is the position of a char-
acter on the line: for instance, the list -28 asks cutto copy the first 28
characters of every line of files to the standard output.

-flist list represents field positions, each integer is the position of a field on
the line. Fields are delimited by a special character (see option -d). If
no delimiting character appears on one line, this line will be copied just
as it is to the standard output, unless option -s has been given.

-dc Take c as the delimiting character. By default the fields are delimited
by tabs.

-s Do not output lines containing no delimiters.

26 The Berkeley Utilities V2.0

Reference Manual cut

Examples:

C:\>cat junk

apples 12 \kilos

raisins 14 \pounds

oranges 23 \units

C:\>cut -c3-10 junk

ples 12

isins 14

anges 23

C:\>cut -f2 -d\ junk

kilos

pounds

units

See Also:

paste.

The Berkeley Utilities V2.0 27

df Reference Manual

Displays space left on various drives

Synopsis: df [drive specifications]

Shows statistics for the space used on all hard disk drives (default).
Optionally, a list of drives, including floppies, may be given as an argu-

ment. A drive may be specified as a single letter or as a single letter followed
by “:”. Ranges are allowed.

Examples:

• ask for space left on floppy a: and hard drive e:

df a e:

• ask for space left on c:, d:, and e:

df c:-e:

or

df c-e

Here is the output which might be given by the above command:

drive total bytes bytes used (%) bytes free (%) cluster size

C: 33462272 24475648 73.1% 8986624 26.8% 2048

D: 314613760 295624704 93.9% 18989056 6.0% 8192

E: 83247104 81633280 98.0% 1613824 1.9% 8192

Total 431323136 401733632 93.1% 29589504 6.8%

28 The Berkeley Utilities V2.0

Reference Manual diff

Compare files or directories

Synopsis: diff [options] f1 . . .fn

diff compares files or directories. If the argument - is given, stdin is
used.

Description:

When there are two arguments: if they are binary files, diff just tells
if they differ; if they are text files, diff reports in a format similar to an ed
script which lines must be changed to make f1 identical to f2. diff gives no
report when the files are identical, except if the option -s described below has
been given. If f1 and f2 are both directories, they are first sorted, and then
diff shows the files which appear in only one of them, and gives a report
on files or subdirectories with the same name. If there are more than two
arguments, the last one (fn) must be a directory, and for each other argument
fi, diff compares fi and fn\fi. If the option -r described below has not been
given, diff reports common subdirectories, even if they are equal.

Options:

The possible options are:

-t Consider all files as binary, i.e. just tell if they differ.

-h n(half-hearted) Use a faster algorithm which also requires less memory for
big files, but which is less precise and may give spurious results or no
result at all (while the usual algorithm is guaranteed to find the minimum
necessary set of lines to change). The optional number n is the maximum
number of lines that a single difference can be (resynchronisation is on 3
identical lines) — default n is 200; making it bigger may make diff -h
work in more situations at the cost of slower excution.

-r Tells diff to work recursively on subdirectories.

-s Give also a report on identical files.

-b Ignore final whitespace (blanks and tabs) at the end of a line and consider
as equal any other non-empty sequence of whitespace characters when
comparing lines.

Only one of the following options may be given at once:
-e Gives a true ed script.

The Berkeley Utilities V2.0 29

diff Reference Manual

-f Give an inverted script.

-cn Give n lines of context around each difference. By default, 3 lines
are given.

-Dname Useful mostly when dealing with C source files. Gives on stdout a new
file which has #ifdef’s such that it will compile as f2 if headed with
#define name and as f1 otherwise. The result might not compile if
there were already #ifdef’s within the differences.

Examples:

We show the output given by various options on the following two files:
C:>cat a.c

#define LINT_ARGS

#include <stdio.h>

main(){

printf("hello, world!");

}

C:>cat b.c

#include <stdio.h>

main(){

printf("hello, world!");

exit(0);

}

Default behavior:
C:>diff a.c b.c

<<< a.c and b.c differ >>>

1d0

< #define LINT_ARGS

4a4

> exit(0);

Option “conditional compilation”:
C:>diff -Dx a.c b.c

#ifndef x

#define LINT_ARGS

#endif /* x */

#include <stdio.h>

main(){

printf("hello, world!");

#ifdef x

exit(0);

#endif /* x */

}

30 The Berkeley Utilities V2.0

Reference Manual diff

Option “ed script”:

C:>diff -e a.c b.c

4a

exit(0);

.

1d

Bugs:

The number of lines per file is limited to about 15000 unless option -h
is given, whence there is no limit.

Portability:

The options -r, -s and -c are only found in BSD 4.xx. Option -t is an
enhancement.

See Also:

comm, ed, sed.

The Berkeley Utilities V2.0 31

dtree Reference Manual

display tree structure of directories

Synopsis: dtree [option] [pathname]

Description:

dtree displays the tree structure formed by subdirectories of the direc-
tory given as argument on the command line. By default (when no argument
has been given) dtree works on the current directory. Video attributes are
used to enhance the display of different levels in the hierarchy.

Option:

The option -a also lists the files in each subdirectory.

Examples:

C:>dtree \
\windows\pif\
\msc\include\sys\

lib\
\games\
\dos\

Here we have represented different video attributes by different fonts.

Portability:

The use of different video attributes to highlight key parts of the output
is an enhancement.

See Also:

ls -RM

32 The Berkeley Utilities V2.0

Reference Manual du

estimate file space usage

Synopsis: du [option] [pathnames]

Description:

du reports the disk space used by each argument, in kilobytes. By default
(when no argument has been given) du reports on the current directory. Video
attributes are used to enhance the display of different levels in the hierarchy.

When a directory is encountered, subdirectories within it are reported
on recursively, and then a total printed for that directory.

Options:

-lnn Set the level of detail to nn; that is, only print on the report those
directories whose distance to the top is less than nn (the space of all
subdirectories is still accounted for).

-s Only print the grand total for each argument (equivalent to -l0).

Portability:

The option -l gives more control than UNIX versions of du. The use of
different video attributes to highlight key parts of the output is an enhance-
ment.

See Also:

ls -RMU

The Berkeley Utilities V2.0 33

ech Reference Manual

echo

Synopsis: ech [-n] arg1 arg2 . . . argn

Description:

ech echoes its arguments, separated by a space, to stdout and adds
an end-of-line after the last argument. ech may be used to find out how
The Berkeley Utilities interpret command line arguments.

Option:

The option -n tells ech not to add an end-of-line (\n) character after
the last argument.

Examples:

C:\>ech Hello

Hello

C:\>ech $PATH

\bin;\util;\dos

C:\>ls *.dat

C:\ 3 entries 123456 bytes

abc.dat def.dat ghi.dat

C:\>ech *.dat

abc.dat def.dat ghi.dat

C:\>cd \tc\include

C:\TC\INCLUDE>ech .

c:\tc\include

C:\TC\INCLUDE>ech ..

c:\tc

Portability:

This command is called echo in UNIX systems, but since ECHO is also an
internal command of MS-DOS, we had to give it a different name.

34 The Berkeley Utilities V2.0

Reference Manual ed

Text editor

Synopsis: ed [options] [file]

ed edits file if given as argument; file becomes the currently remembered
filename (see below; more precisely ed simulates the command “e file” de-
scribed below). If no file argument has been given, the edited buffer starts
empty with no current filename.

Description:

Regular expressions are used within ed to specify line addresses and to
specify part of lines (in the s command). Please consult the Appendix for
more information about regular expressions.

Options:

The possible command-line options are:

-s “Silent”: suppresses printing of a character and line count for com-
mands e, r and w, of diagnostics when using e and q on a modified
buffer, and of the prompt ! for the command !command. Keeps
the inscrutable form of error messages of UNIX’s ed, that is error
messages consisting of a simple “?”.

-p string Specifies a prompt string that will be used by ed in command mode.

-f file Takes the ed script (the sequence of commands to be executed) from
file.

Addresses:

Individual lines of the file to edit are specified by addresses built as
follows:

. Represents the current line (which is usually the last line affected
by a command).

$ Represents the last line of the edited file.

n Represents the nth line of the file (n is an integer, counting starts
from 1. As a special convention, 0 sometimes represents a place
before the first line of the file).

The Berkeley Utilities V2.0 35

ed Reference Manual

’x Represents the line addressed by the label x, where x is a lower-case
letter (these labels are created by the command k; see below).

/pattern/ Represents the first line from ‘.’ matched by pattern (a regular
expression). The search goes forward in the file, and at the end of
the file wraps back to the beginning, until a match is found or until
the search goes back up to and including its starting line.

?pattern? Like /pattern/ excepted that the search goes backwards.

+number
-number

An address followed by + or - followed by a decimal number means
that the computed address must be increased (or decreased) by
that number of lines. The + sign may be omitted if the preceding
address was nonempty. An address starting with + or - is computed
with respect to the current line. If no number is given after the +
or - the number 1 is taken by default. In additions several + or -
can be given. For instance ‘++’ is the same as ‘.+2’.

Commands:

The ed commands take 0, 1, or 2 addresses. When 2 addresses are given,
they are usually separated by a comma. When two addresses are separated by
a semicolon, the current line (‘.’) is set to the first address and only then the
second computed. Several such addresses can be given and then the last two
are used for the command. For commands taking two addresses, the second
address must always specify a line after the first one in the buffer, and the
pair of addresses identifies the range of lines between the two addresses. A
command which usually requires n addresses (n = 1 or 2) and has been given
fewer addresses assumes default addresses. When one address has been given
to a two-addresses command, that address is taken as default for the second
address. Finally “%” is equivalent to the address pair 1,$. All commands are
given below preceded with the specification of their default addresses within
brackets.

The first three commands below put ed in insert mode. In that mode
any characters entered by the user are taken as text and no command is
recognized excepted that the character ‘.’ given as only character on its line
exits insert mode to go back to command mode.

[.] a
〈text〉
.

Appends entered 〈text〉 just after the addressed line. The ad-
dress 0 means the beginning of the file. ‘.’ is set to the last in-
serted line (to the addressed line if there was no 〈text〉 entered).

[.,.] c
〈text〉
.

Deletes the addressed lines and replaces them by entered 〈text〉.
‘.’ is set to the last entered line (to the next one if no line was
entered).

36 The Berkeley Utilities V2.0

Reference Manual ed

[.] i
〈text〉
.

Inserts entered 〈text〉 just before the addressed line. ‘.’ is set
to the last entered line (to the addressed line if no line was
inserted).

Other commands:

[.,.] d Deletes the addressed lines. ‘.’ is set to the line after the
last deleted line (if the last line of the buffer was deleted
then ‘.’ is set to the new last line).

efile
e!command

In the first form, this command replaces the content of
the edited buffer with those of file. ‘.’ is set to the last
line read. If no file name has been given, the currently
remembered filename, if any, is read. Otherwise file be-
comes the remembered filename for future e, r, w and
f commands. In the second form command is sent to
MS-DOS to be executed, and its output (stdout) is read
and replaces the contents of the buffer. In that case the
remembered filename is not changed. In both forms, if
the contents of the buffer have been modified since the
last w command, the e command must be confirmed by
repeating it.

Efile
E!command

This command is just like e, except that no confirmation
is asked in case of buffer modifications since the last w
command.

ffile If file is given, this command changes to file the currently
remembered filename. Otherwise f just prints on stdout
the currently remembered filename.

[1,$] g/pattern/list First, all lines containing an occurence of pattern are
marked. Then ‘.’ is successively set to each of these
lines and the list of commands entered is executed. The
list of commands may extend over several lines if each
of them, excepted the last, ends with a \. The com-
mands a, c and i are allowed and insert mode is es-
caped either by a solitary dot (.) or by a line not ending
with \. Commands g and v are not allowed in the list
of executed commands. An empty list is equivalent to
the p command.

[.,.+1] j Joins consecutive lines specified by the addresses (sup-
pressing intervening newline characters).

The Berkeley Utilities V2.0 37

ed Reference Manual

[.] kx “Labels” with x the addressed line. x must be a lower-
case letter. ’x can then be used to address that line.
‘.’ is left unchanged.

[.,.] l Prints “visibly” the addressed lines: that is, nonprint-
able characters such as ‘tab’ or ‘newline’ are repre-
sented as in C by mnemonics and other non-printable
characters are represented by their octal code. In ad-
dition lines greater than screen width are folded. ‘l’
may be added as a flag to any command excepted e, f,
r and w, and has then the effect of printing the new ‘.’
after execution of that command.

[.,.] ma Moves addressed lines to just after the lines addressed
by a. Address 0 is allowed for a meaning before the first
line. ‘.’ is set to the new position of the last moved line.

[.,.] n Prints addressed lines, preceded by their line number
and a tab. ‘.’ is set to the last printed line. n may
be added as a flag to any command other than e, f,
r and w, and has then the effect of printing the new ‘.’
after execution of that command.

[.,.] p Prints addressed lines. ‘.’ is set to the last line printed.
p may be added as a flag to any command other than
e, f, r and w, and has then the effect of printing the
new ‘.’ after execution of that command.

P The prompt in command mode is set to * the first time
this command is executed. The prompt is then flipped
from * to empty on subsequent uses of P.

q Leaves ed without saving the buffer. This command
must be confirmed by giving it twice if the buffer has
been modified since the last w command.

Q Leaves ed; does not ask for confirmation even if the
buffer has been changed.

38 The Berkeley Utilities V2.0

Reference Manual ed

[$] rfile
r!command

In the first form, inserts the contents of file in the buffer
just after the addressed line. If no file name has been
given, the remembered filename is used. Otherwise, file
becomes the currently remembered filename only if it
was the first name given since entering ed. The address
0 is allowed, meaning before the first line. The number
of read lines and characters is printed, and ‘.’ is set to
the last read line. In the second form, the command is
sent to MS-DOS to be executed and its output (stdout)
is read into the buffer. In that case the remembered
filename is not changed.

[.,.] s/pattern/repl/
s/pattern/repl/g
s/pattern/repl/n

Does substitutions on addressed lines containing the
pattern. Depending on the flags, the first occurence
(no flags given), or all occurences (with the g flag)
or the nth occurrence of the pattern in each of these
lines will be replaced by the string repl. Any charac-
ter other than a space or a newline can be used as a
delimiter for the pattern and the replacement. ‘.’ is
set to the last line where the substitution occured.
Several characters have a special meaning in repl. &
represents the part of the line which matched the
pattern, and \n where n is a single digit represents
the part of the line matched by the nth sub-regular
expression (delimited in pattern by \(and \)). If
repl consists only of the character ‘%’, it is replaced
by the value is had in the last s command. The
special meaning of & and of \ and % can be escaped
by preceding them with another \. It is possible to
replace a line by several lines by putting newlines in
repl; each of these must be preceded by a \, so repl
consists of several lines, all but the last ending in a
\. This is not allowed within a g command.

[.,.] ta This command copies addressed lines to just after the
line addressed by a. ‘.’ is set to the last copied line.
Address 0 is allowed for a.

u Undoes the last command which modified the buffer,
i.e the last command amongst a, c, d, g, i, j, m, r, s,
t and v.

[1,$] v/pattern/list This command is just like g, excepted that the list of
commands is effected on lines containing no match of
the pattern.

The Berkeley Utilities V2.0 39

ed Reference Manual

[1,$] wfile
w!command

In the first form, the addressed lines are written to file.
If no file name was given, the currently remembered
filename is used. Otherwise, file becomes the currently
remembered filename only if it was the first name given
since entering ed. The number of written lines and
characters is printed. ‘.’ is left unchanged. In the sec-
ond form, command is sent to MS-DOS to be executed,
its standard input stdin being a file consisting of the
addressed lines. In that case the remembered filename
is not changed.

[$] = Prints the line number of the addressed line. ‘.’ is not
changed.

!command Sends command to MS-DOS to be executed. If the first
character of the command is !, it is replaced by the last
command executed by another ! command in ed. ‘.’
is left unchanged.

[.+1] An address alone on a line is equivalent to the command
p. A 〈CR〉 alone on a line is equivalent to the command
‘.+1p’.

40 The Berkeley Utilities V2.0

Reference Manual expand

Expands tabs to blanks in character files

Synopsis: expand [-tabsize] [-tab1,tab2,. . .]file(s)

Expands tabs to blank characters in character files given as argument,
prints the result to the console (stdout). If no file arguments are given or one
of them is “-” the corresponding input is taken from the console (stdin).

Description:

By default tab stops are put every 8 characters. If the option -tabsize is
given, they are put instead every tabsize characters.

If instead the option -tab1,tab2,. . . is given, tab stops are put at columns
tab1, tab2, etc. . . (origin 0).

See Also:

unexpand.

The Berkeley Utilities V2.0 41

find Reference Manual

find files with certain attributes and execute commands on each

Synopsis: find pathname-list predicate

find searches for files matching predicate, down in the directory hier-
archy below each argument of the pathname-list, or by default, below the
current directory.

Description:

predicate is made of primary predicates, which are keywords preceded
by a - and followed by 0, 1 or more arguments, and combined with logical
operators. The operators are, in order of increasing precedence:
• logical or, represented by the argument -o appearing between two pred-

icates.
For example, -name *.bak -o -name *.tmp is true for each file whose
extension is .bak or .tmp.
• logical and, which is implicitly represented by the juxtaposition of two

predicates.
For example -name *.bak -mtime 0 is true for each file whose extension
is .bak, and which has been created or modified during the last 24 hours.
• the negation, which is represented by the argument !, preceding a pred-

icate.
For example ! -name *.bak is true for each file whose extension is not
.bak.
• Arguments consisting of parentheses are used to group predicates, chang-

ing the default order of precedence of the operators.
For example (-name *.bak -o -name *.tmp) -mtime 0 is true for
each file whose extension is .bak or .tmp, and which has been created
or modified during the last 24 hours. (since parentheses are just normal
arguments on the command line, they must be preceded and followed by
at least one space).

By default, directories are looked at before their subdirectories and files.
The end of pathname-list (i.e. the beginning of predicate) is indicated by the
first argument beginning with “-” or “(”.

Syntax of “predicate”:

The syntax of predicate may be described by the following formal gram-
mar (in the description, “iff” stands for “if and only if” and “|” stands for
“or”):

42 The Berkeley Utilities V2.0

Reference Manual find

〈predicate〉
:= 〈conjunctive〉

〈predicate〉 is true iff 〈conjunctive〉 is true.

| 〈conjunctive〉 -o 〈conjunctive〉
〈predicate〉 is true iff one of the two 〈conjunctives〉 is true.

〈conjunctive〉
:= 〈term〉

〈conjunctive〉 is true iff 〈term〉 is true.

| 〈term〉 〈term〉
〈conjunctive〉 is true iff the two 〈terms〉 are true.

〈term〉
:= 〈primary predicate〉

〈term〉 is true iff 〈primary predicate〉 is true.

| ! 〈primary predicate〉
〈term〉 is true iff 〈primary predicate〉 is not true.

〈primary predicate〉
:= (〈predicate〉)

〈primary predicate〉 is true iff 〈predicate〉 is true.

| 〈primary predicate〉
One of the following predicates defined by keywords:

〈primary predicate〉
:= -name pattern

〈primary predicate〉 is true iff the name of the current file is matched
by pattern. pattern may contain wild-cards which are expanded ac-
cording to the usual rules for filename argument (for a precise de-
scription, look in the general section of the documentation).

| -perm permission

〈primary predicate〉 is true iff the file has the given permission. Two
values can be specified for permission:

r: true for a read-only file.
w: true for a writable file.

The Berkeley Utilities V2.0 43

find Reference Manual

| -type filetype

〈primary predicate〉 is true iff the file is of the given type. Two values
can be specified for filetype:

f: true for an ordinary file.
d: true for a directory.

| -size value

〈primary predicate〉 is true iff the size of the file (given in kilobytes)
matches the given value. Three forms are recognized for value; n
below is an integer:

n: true for files whose size is exactly n kilobytes.
+n: true for files whose size is more than n kilobytes.
-n: true for files whose size is less than n kilobytes.

| -mtime value

〈primary predicate〉 is true iff the file has been modified a number of
days ago matching the given value. Three forms are recognized for
value; n below is an integer:

n: true for files modified exactly n days ago.
+n: true for files modified more than n days ago.
-n: true for files modified less than n days ago.

| -newer filename

〈primary predicate〉 is true iff the current file has been created or
modified more recently than filename.

| -exec command

The command is sent to MS-DOS to be executed, where command is a
sequence of arguments ending with a “;”. If one of the arguments is
{}, this argument is replaced by the current filename. The resulting
〈primary predicate〉 is true iff the executed command returns an exit
status of 0 (success). For example,
-exec grep -sw signal {} ;
is true for the files which contain at least one occurrence of the word
signal.

| -ok command

Like “-exec”, but command is echoed to the terminal before execu-
tion and the user is asked wether it should be executed. If the answer
is negative, 〈primary predicate〉 is false. For example,
-ok cat {} ;
asks if the current file should be copied to the terminal; if the answer
is positive, the following predicates will be applied on the current file

44 The Berkeley Utilities V2.0

Reference Manual find

after its printing. If the answer was negative, find works on the next
file.

| -print

This 〈primary predicate〉 is always true, and causes the current path-
name to be printed on the standard output.

| -depth

This 〈primary predicate〉 is always true, and forces the directories to
be looked at after their files or sub-directories.

Beware: operators (!, -o, (,)) must be separated by one or more spaces
from the predicates, arguments and other operators.

Examples:

In order to delete the files older than a week whose extension is .bak or
.tmp, under the directory \applis or its subdirectories:

find \applis (-name *.bak -o -name *.tmp) -mtime +7 -exec rm -i {} ;

Error Messages:

predicate-list error

The analysis has found the end of predicates, but the command line is not
finished.

unbalanced parentheses

There is a missing closing parenthesis.

predicate xxx unknown

or

xxx found when expecting predicate

Another token was found at a place where a keyword predicate was expected.

incomplete statement

The argument of -exec or -ok doesn’t end with a “;”.

can’t access xxx

The argument of -newer cannot be found or looked at.

xxx: no match

An argument in pathname-list doesn’t exist.

The Berkeley Utilities V2.0 45

find Reference Manual

Portability:

The -depth option is an enhancement.

See Also:

Command line expansion of “//” in the section entitled “Calling the
Utilities”.

46 The Berkeley Utilities V2.0

Reference Manual grep

Search for a text pattern in files

Synopsis: grep [options] [pattern] [files]

grep works on the given argument files. If no argument or the argument
- has been given, grep takes its input from stdin.

Description:

grep searches for occurrences of a pattern (regular expression) in each
of the argument files and gives on stdout the list of lines where the pattern
has been found. Video attributes are used to show the part of the line which
matches the specified pattern. To get more information on the syntax and
usage of regular expressions, look at the Appendix.

Options:

The possible options on the command line are:

-s This option tells grep to give no output but to report the result of
the search with a return code as follows:

0 no match found. 1 a match found. 2 some error.

-c Only give a count of matched lines for each file.

-l Only give the names of the files containing a match.

-h Do not output in front of matched lines the name of the file where
the line was found (the default is to output it).

-n Give line numbers of matched lines.

-t Stop the search at the first match in each file.

-i Do not take into account lower-case / upper-case distinction when
searching.

-w Match only complete words.

-x Match only complete lines.

-v Instead of giving lines containing a match, give lines which do not
contain a match.

-e expr Giving a pattern as argument to the -e option allows one to give a
pattern beginning by the character -, and can also be used to look
for several patterns simultaneously (if there are multiple -e options).

-f file This option also allows several patterns; the argument specifies a file
containing patterns to look for, giving one per line.

-V Take the pattern verbatim, i.e. do not interpret any of the special
regular expression operators.

The Berkeley Utilities V2.0 47

grep Reference Manual

Examples:

In the following examples we represent different video attributes by dif-
ferent fonts.

C:\TC\MCALC>grep video *.c

mcdisply.c:/* Prints a string in video memory at a selected location */

The following example gives the names of all functions in a C program file
whose name have less than 16 characters, as long as their name is given at
the beginning of a line.

C:\>grep "^[a-zA-Z][0-9a-zA-Z]\{0,15\} \{0,1\}(" file.c

cleanscreen()

winnie (mess)

show2 ()

GetExp(c)

Notes:

grep was created around 1973; it was soon considered too slow. fgrep
(fast grep) was then written — it can handle several words at once, each
without metacharacters. egrep (extended grep) came later, incorporating
every feature and adding many more (for instance |, which means “or”, and
is not yet implemented in our grep). grep should disappear on UNIX, but has
not, and in fact is a nuisance, as many UNIX users will type grep when they
should use egrep. Our grep is very close to egrep, and the use of option -V
turns it into fgrep.

Portability:

The use of different video attributes to highlight key parts of the output
is an enhancement.

Options -w, -V and the second part of option -e are also enhancements.

48 The Berkeley Utilities V2.0

Reference Manual head

Display the head of one or several files

Synopsis: head [-number] [file(s)]

Copies on stdout the first lines of the argument(s) file(s). If no files are
given, head takes its input from the console (stdin).

Description:

By default, head copies the first 10 lines of each file to the output. If
the option -number is given, it copies instead the first number lines.

If more than one file is given, each is listed preceded by a header of the
form “==> filename <==”. Thus for instance the command:

head -999 *.c

is a convenient way to list with headers all your short .c files.

The Berkeley Utilities V2.0 49

join Reference Manual

relation join of two files

Synopsis: join [options] file1 file2

Description:

Does a join (cartesian product) of the two argument files. That is,
lines of each file are interpreted as records divided into fields (separated by
whitespace (a sequence of blanks or tabs) by default). Each file should be
sorted for one of its fields (by default the first field) which represents the join
key. For each couple of lines, one for each file, which have the same join field,
a combined record is output which by default is the join field followed by the
other fields in the first file and then the other fields in the second file.

Options:

The possible options are:

-tc Use character c as field separator (default is whitespace).

-an Produce output for lines which do not match. If n is specified as
1 (resp. 2) then output only unpaired records from file1 (resp.
file2).

-jn m Use field m as join field in filen (n absent means in both files).

-e s On output, an empty field is replaced by string s.

-o n.m . . . This option specifies the fields to write to the output lines: each
output line will have as many fields as arguments of the form n.m
following this option (until the first argument not of this form
which may be the end-of-options “--” specifier). An argument
n.m specifies field m of filen.

50 The Berkeley Utilities V2.0

Reference Manual ls

list files and directories

Synopsis: ls [options] [arguments]

ls gives the list of files and directories matched by the arguments, first
files, then directories and their contents, sorted by name. Used with the
wild-card expansion built in The Berkeley Utilities, the various options of ls
create a powerful way to look at the contents of a disk.

Description:

ls puts in front of the list (and of any sublist relative to a directory
whose contents are listed) a header indicating the number of entries and the
space taken by the files in the list.

Options:

list selection options:

-a List of all entries, including “hidden” files, system files, ‘.’ and ‘..’.

-A Same list but omits ‘.’ and ‘..’.

-D List only directories.

-d Do not list the content of the arguments which are directories, just give
their names.

-F List only files.

-R Recursively list subdirectories. When combined with the option -1, names
are given with their complete pathnames.

sort options:

The default is an alphabetic sort on filenames.

-e Alphabetic sort by extension.

-t Sort by time of last modification, the most recent time listed first.

-L Sort by decreasing size.

-r Reverse the specified sorting order.

-f Do not sort.

The Berkeley Utilities V2.0 51

ls Reference Manual

report options:

-x The list is laid out left to right, line by line (the default is top to bottom
and left to right, column by column).

-1 Give the list on a single column (this is the default if the output of ls is
redirected to a file).

-C Multi-column report, with a header for each directory (this is the default
when the output of ls is to a terminal).

-M Gives only the headers (useful with the option -R to make a survey of a
subdirectory hierarchy).

-m List the entries with their full pathnames, separated by commas.

-p Decorate directory names by appending to their names a \.

-s Give the size in bytes of each entry.

-T Give last time modified for each entry.

-l Complete list: corresponds to options -sT, with in addition 3 indicators
xxx where the first x is one of {-dsc} where - means ordinary file, d
directory, s system file, c special character file (e.g. con: or prn:), the
second x is one of {-h} meaning ordinary file or hidden file and the third
is one of {rw} meaning read-only or read-and-write.

size options:

-U[unit]
or
Unumber
of bytes

Rounds up individual sizes to a multiple of the cluster size of unit.
By default the disk unit of the first argument is taken. Free space
left on the disk is also given. An explicit cluster size (in bytes)
may given instead of a unit name. This option allows us to know
the actual size taken by the files on the disk (the operating system
always allocates an integral number of clusters to a file), and also
to know the size they would take if they were transferred to the
disk whose unit was given as argument to the -U option. It worth
noting that a given set of files probably uses a lot more space on a
hard disk than on a floppy because its clusters are usually larger.

52 The Berkeley Utilities V2.0

Reference Manual ls

Examples:

• List each of the subdirectories with its size (a very valuable piece of in-
formation when the disk is nearly full):

C:\>ls -RM

c:\ 5 entries 115900 bytes

c:\dease\ 15 entries 552217 bytes

c:\jc\ 11 entries 146038 bytes

• List all the EXEcutable files with a filename starting in e, somewhere in
or below the current directory:

D:\MSC>ls .\\e*.exe

.\\e*.exe 7 entries 102539 bytes

.\bin\errout.exe .\bin\exepack.exe .\exe2bin.exe .\me\bin\exp.exe

.\bin\exemod.exe .\errshow.exe .\me\bin\ech.exe

• List the sidekick subdirectory and show the space it would take if trans-
ferred to a: (237056 bytes for the contents, 237568 bytes if the directory
sidekick is also created on a:); we see that there is enough space left on a:
to transfer it (there are 803840 bytes left):

D:\>ls -Ua \sidekick

\sidekick\ 10 entries 237056 bytes

notes read-me.sk sk.hlp skinst.com skm.com

phone.dir sk.com skc.com skinst.msg skn.com

=== total: 237568 bytes= 20% of capacity of unit a: ===

unit a: 512 bytes/sector 512 bytes/cluster 803840 bytes left (66.2%)

Portability:

The option -A is taken from the Berkeley Unix system.
The use of different video attributes to highlight key parts of the output

is an enhancement.
The options -e, -L, -M, -T and -U are also enhancements.

See Also:

du, df; command line expansion (see section “Calling the Utilities”).

The Berkeley Utilities V2.0 53

make Reference Manual

update files

Synopsis: make [options] [targets] [definitions]

make finds out the minimum sequence of commands needed to update
a program or a group of programs when some of the files they depend on
have been modified (are more recent) and then executes that sequence of
commands.

Description:

Among the arguments that are not options, those containing a “=” are
treated separately (see macro definitions), the others are the targets to up-
date. makereads one or more description files specified by an -f option (see
below), and if there was no -f option, by default, the file “makefile” in the
current directory. makeinterprets the contents of these files as a sequence
of rules giving the dependencies between the targets (non-existent names or
file names) and other files, and the actions to execute (methods) in order to
create a target if the file doesn’t exist, or to update it if it exists and is older
than its dependents. makeupdates the targets specified on the command line
or the first “real” target found in the first description file if no target was
specified on the command line, or all targets if the -a option has been given.
Rules and methods are applied recursively, i.e. if one dependent is not up to
date, it will be updated before going on. Whether description file is explicitly
given on the command line or not, makefirst loads the built-in rules except if
the -r option is given. Those built-in rules are taken from the file make.ini
if such a file can be found in the directories specified by the environment
variable path (starting with the current directory), otherwise make will use
only the few rules compiled into it. In order to send the built-in rules to the
terminal, enter:

make -f nul -p
(see the -p option below).

Contents of description files:

• “#” starts a comment and everything appearing between a “#” and the
end of the line is ignored, the newline included.

• Blank lines are also ignored but may be used to terminate entries.

• Lines that do not begin with 〈Tab〉 and containing a “=” not preceded by
a “:” are macro definitions.

54 The Berkeley Utilities V2.0

Reference Manual make

• The following lines are grouped to form entries:
- The first line of an entry, called a rule, must be a non-empty se-

quence of blank delimited targets, followed by “:” or “::”, and
followed by a dependents list that may be empty. targets and de-
pendents are sequences of characters representing legal file specifi-
cations. Drive specifications (ex.: a:) are accepted, but bring a
new constraint for the syntax of this line: if the targets and the
dependents are separated by an single “:” and if the last target is
a one-character name, this “:” must be followed by at least one
blank. The targets beginning with a “.” and containing neither
“\” nor “/” are called pseudo-targets.

- The end of the line after an eventual “;” , and the following lines
beginning with a 〈Tab〉, are the commands to execute in order to
update targets if the updated dependents are newer. These com-
mands are called methods. A line that doesn’t begin with a 〈Tab〉
or a “#” terminates the entry. A method may be several lines long
if every line except the last one ends with a “\”. The 〈Tab〉 at
the beginning of a method may be followed by one or both of the
characters “-” and “@”. “-” causes make to ignore an error status
returned by this given method even if the -i option was not given,
and “@” prevents displaying that method before execution except if
the -n option was given (see those options below).

• A target may appear several times, with the following restrictions:
- A target may not appear left of “:” and later left of “::”.
- If a target followed by “:” appears in several entries, only one of

these entries may contain methods. If a dependent in any entry is
newer than target, these methods are executed, and the inference
rules are not examined. If no method was given, make looks for an
inference rule to apply (see below).

- If a target followed by “::” appears in several entries, several of
these entries may contain lines of methods. In which case, if a
dependent in an entry is newer than the target, the methods given
for this entry are executed. The inference rules are also executed if
applicable.

- The dependents of each occurence of a target accumulate, except for
the pseudo-target “.SUFFIXES”.

Pseudo-targets:

The following pseudo-targets have a special meaning for make:

The Berkeley Utilities V2.0 55

make Reference Manual

.SUFFIXES The dependents have a name beginning with a “.”, usually con-
ventional suffixes for files. They are used by the inference rules
(see below). An entry “.SUFFIXES” without any dependents can-
cels all formerly declared suffixes.

.DEFAULT If makefinds no rules, neither explicit ones nor inference rules giv-
ing methods for a target, and if an entry “.DEFAULT” is found, the
methods following this entry will be applied.

.PRECIOUS If an user interrupt (^C) takes place during the updating of a file,
this file is deleted unless it is a dependent of the pseudo-target
“.PRECIOUS”.

.IGNORE This pseudo-target forces the “ignore errors” mode, just as if
the -i option had been given on the command line.

.SILENT This pseudo-target forces the “silent” mode just as if the -s option
had been given on the command line.

The other pseudo-targets recognized by makeare those built by catenating
two suffixes, and are called inference rules. Typically, an entry for a pseudo-
target “.c.obj” specifies a method to update the file name.obj from the
file name.c if no explicit rule is found, i.e. if the target name.obj doesn’t
appear explicitly.

Examples:

56 The Berkeley Utilities V2.0

Reference Manual make

Let us look at an example of a makefile :

compiler options:

CFLAGS=/DLINT_ARGS

linker options:

LFLAGS=/noi

#

to cancel the eventual suffixes in "make.ini" ,

and accept only the ".c" et ".obj" suffixes:

#

.SUFFIXES:

.SUFFIXES: .c .obj

compile method:

.c.obj:

msc $(CFLAGS) $*;

list of all source files:

FILES=main.c sub1.c sub2.c

main target, building the application:

main.exe: $(FILES:.c=.obj)

link $(LFLAGS) $(FILES:.c);

#auxiliary target, for floppy backup:

backup:$(FILES)

cp $? a:

touch backup -f

The lines beginning with a # are ignored. The lines “CFLAGS=. . .” and
“LFLAGS=. . .” are macro definitions, used to give a values to the compiler and
linker options (which can be easily changed by arguments on the makecommand
line or with environment variables; see below). The next lines cancel the suf-
fixes possibly declared in the built-in rules and declare as only recognized
suffixes .c and .obj; next the default rule to obtain an object module from
a C source is given. Then a new macro is defined, and the targets main.exe
and backup are successively declared, with their dependents and the methods
to update them. The target main.exe is the main target, i.e. the default
target if no target is given on the command line, because it is the first true
target occuring in the description file.

Macro substitution:

In any line of a description file, the character “$” starts a substitution.
Macro calls may take several forms:

1 $(x), where x is a string containing neither “(” nor “:”.

The Berkeley Utilities V2.0 57

make Reference Manual

2 $(x:y), where x contains no “)” and y contains neither “)” nor “=”.
3 $(x:y=z), where neither x nor y nor z contain any “)”.

The parentheses may be replaced by curly brackets; in form 1, if x is a one-
character string, they may be left out. In form 1, x is replaced by the “value”
of the so called macro (by the empty string if the macro is not defined). In
form 3, for each substitution, all non overlapping occurences of the string y
in the value of x are replaced by z. Form 2 is similar to form 3 with z being
an empty string.

For example, with the preceding makefile , after substitution, the entry
of the file dealing with “main.exe” becomes:

main.exe: main.obj sub1.obj sub2.obj

link /noi main sub1 sub2;

The part before the definition of “FILES” in makefile could be in make.ini.
Some macros are predefined in make, and can’t be explicitly assigned to:

The following macro always has the same value:
- $$ always has the value $.

The following macros see their values changed according to the current rule:
- $* is meaningful only in the methods for an inference rule. Its value is

the dependent ’s name less the suffix, which is also the name of the target
less the suffix.

- $< is meaningful only in a method for an inference rule or a .DEFAULT
rule. Its value is the entire dependent’s name.

- $@ is meaningful only in a method for an explicit rule. Its value is the
entire target’s name.

- $? is meaningful only in a method for an explicit rule. Its value is the
list of the dependents that should be updated.

The first three macros have two variants: if “F” is appended (e.g., $(*F)), the
“directory” part of the name is stripped from the value. If “D” is appended
(e.g., $(@D)), only the “directory” part is kept (.\ if that part would be
empty). The other macros may explicitly be given values in the following
ways:

1 On the command line, through an argument of the form x=v; these
definitions take effect before any other action and can’t be modified by
redefinitions in make.ini or a description file.

2 Indirectly, through environment variables. Any environment variable
which has a value is considered as defining a macro with the same name
and value.

3 By a line of the form x=v in the description file.
4 Through the execution of a method whose command is set (which thus

defines an environment variable).

58 The Berkeley Utilities V2.0

Reference Manual make

By default, 2 takes place before 3, and definitions in the description files
supersede previous ones. The -e option changes that default but the envi-
ronment variable MAKEFLAGS is always read first.

For example, with the preceding makefile , if the files main.c and
sub2.c have been modified since the last main.exe, the command

make

will force the execution of:

msc /DLINT_ARGS main.c;

msc /DLINT_ARGS sub2.c;

link /noi main sub1 sub2

The command

make CFLAGS= LFLAGS=/noi/exepack

will force the execution of:

msc main.c;

msc sub2.c;

link /noi/exepack main sub1 sub2

and the command

make backup

will force the execution of:

cp main.c sub2.c a:

Another macro has a special meaning for make: The presence of $(MAKE)
in a method forces the execution of that line even if the -n option is given.
(see below).

Beware : for the macros in the rules (up to an
eventual “;”), the substitution takes place when
description file is read. But in the lines of meth-
ods, the substitutions are computed again before
each execution.

The Berkeley Utilities V2.0 59

make Reference Manual

Options:

The following options are available on the command line:

-a Update every true target of the given description files.

-px Print the information used by makeon standard output; x may be a
subset of:

m Macros.
s Suffixes
i Inference rules.
e Explicit rules.

If no x is given, “msie” is the default.

-f file file is the name of a description file. By default, make takes makefile.
The - argument causes make to use stdin.

The following options invoke modes and may be forced if the corresponding
letter is found in the environment variable “MAKEFLAGS”. After their value
is established, the new value of MAKEFLAGS is computed and exported to
subshells.

-d Prints the information about the files and their dates on which makebases
its decisions.

-e The values of the environment variables override the macro definitions of
the description files.

-i Normally an exit status different from 0 returned by a method causes
maketo terminate execution. If this option is given, makewill ignore error
codes returned by the commands. This option is forced if the pseudo-target
“.IGNORE” appears in the description files.

-k If the -i option is not given and if a command fails, makecontinues the
execution of the entries not depending on the current target.

-q Checks if target is up to date: returns a status code of 0 if it is, -1
otherwise.

-n Execute no commands: just display them on the terminal, including com-
mands preceded by “@”. Commands on method lines which contain the
“$(MAKE)” macro will nevertheless be executed.

-r Do not use built-in rules.

-s “silent” mode: Do not display the commands before execution. This op-
tion is forced if the pseudo-target “.SILENT” appears in the description
files.

-t “touch” (give the current date to) the targets without executing any
command.

60 The Berkeley Utilities V2.0

Reference Manual make

Error Messages:

The following errors are fatal:

cannot open xxx

Couldn’t open a description file specified by an -f option.

Bad character c (hex x), line d

A lexical error has been found in a description file.

syntax error

A syntax error has been found in a description file.

yacc stack overflow

The description file is too complex for the syntax analyser.

Must be a separator on rules line xxx

Either a “:” in a rule line, or a 〈Tab〉 in a method line is missing.

description file error

An error has been detected in a description file.

fatal error executing xxx

A command returned a status different from 0.

cannot execute xxx

Couldn’t execute a command: no executable with this name could be found
in the directories specified by the environment variable path, or there was
not enough memory available to execute it, or the command line length was
more than 127 characters (an MS-DOS limitation). This last case may come
from too long a macro expansion, especially $?.

interrupted by user

A ^C has been sent by the user.

Excessive macro nesting level

The Berkeley Utilities V2.0 61

make Reference Manual

A nested macro definition exceeds make’s capacity.

symbol table overflow

The number of targets and dependents exceed make’s capacity.

line too long

A line from a description file exceeds the size of the line input buffer (2500
characters).

out of memory

makeneeds more memory for this job.
The following error is fatal only if the -k option is not given.

don’t know how to make xxx

The required rule couldn’t be found.
The following messages are warnings:

\$? list too long.

Buffer overflow during expansion of $?, which is then truncated.

file xxx does not exist.

In case of a -t option, a target file needed to be created by “touch” before
it could be set to the current date.

Cannot touch xxx

In case of a -t option, a file could not be set to the current date.

Inconsistent rules lines for ‘xxx’

A target can’t be followed once by “:” and later by “::”.

Multiple rules lines for ‘xxx’

A target followed by “:” is in two or more entries containing methods.

nothing to make

makecouldn’t find any target to update.

no suffix list.

No suffixes will be recognized by make.

xxx removed

Following a ^C, the file being currently updated has been deleted.

62 The Berkeley Utilities V2.0

Reference Manual make

Bugs:

The return status given by MS-DOS commands is not very consistent:
use the -i option to overcome this difficulty.

Portability:

The ability to issue a command like a:make .exe: is an enhancement.
So is the use of make.ini.

See Also:

touch.

The Berkeley Utilities V2.0 63

more Reference Manual

Text files browser

Synopsis: more [options] [. . . files]

more works on the list of files you entered on the command line (wildcards
are allowed), or directly on stdin if no argument was given, for instance in
case of a pipe.

Description:

more is an interactive utility which enables the user to view one or more
files on the screen.

Options:

The following options are available on the command line:

-tn n is an integer, giving the tab size. By default, n is 8. If n is 0,
tabs will not be interpreted.

-f Lines longer than the screen width are not folded.

-a ANSI escape sequences which specify screen attributes are not
interpreted.

-T Make tabs visible by giving them a different attribute (the fourth
attribute in the environment variable VATTR).

-E Make empty space (ie parts of the screen which do not correspond
to any text in the file) visible by giving it a different attribute (the
third attribute in the environment variable VATTR).

-ln Gives an n lines display if your video card allows it. Currently the
values 25, 43 if you have an EGA or VGA card, and 28 and 50 if
you have a VGA card are accepted. By default the current number
of lines of your display is used.

+line Start the display at line number line. Lines are numbered beginning
at 1.

-epattern Start the display at first occurence of this pattern. pattern is a reg-
ular expression in the style of “ed”. For more information, consult
specific documentation about regular expressions.

-w Match only on complete words.

-i No case significance in regular expression matching.

64 The Berkeley Utilities V2.0

Reference Manual more

Most more commands are unechoed one-character commands with im-
mediate effect. Some commands are longer, entered interactively on the com-
mand line (the last line of the screen, which also serves as a status line), and
need a carriage-return (〈CR〉) before processing. The last screen line is re-
served for various messages and statistics, and user input. It gives the name of
the displayed file, the percentage currently read and receives the 〈CR〉ending
commands (during input of such a command, you may edit it with the arrow
keys, 〈backspace〉, the 〈Home〉 and 〈End〉 keys, the 〈Del〉 key, 〈Escape〉 which
clears the whole command, and you may switch between insert and overwrite
mode with the 〈Ins〉 key). The commands available when inside more may
be sorted into different classes, according to their usage:

Getting on-line help:

h or F1 Open a “help window”: all commands listed below are briefly
described in the two pages of the help window.

Moving inside a file:

Most of these commands may be preceded by an integer argument.

〈space〉 Display the next screenful of the file.

f Idem.

〈PgDn〉 Idem.

〈CR〉 Scroll forward one line.

↓ Idem.

^U Scroll forward one half screen.

b Skip backward and display the previous screenful of the file.

〈PgUp〉 Idem.

↑ Scroll backward one line.

^D Scroll backward one half screen.

G Go to line number n where n is the integer argument given
before the command. This line is displayed as the first line
on the screen if there are enough lines in the file to do so. If
n is absent, goes to the end of the file.

The following commands take no argument:

〈Control Home〉 Go back to beginning of file.

The Berkeley Utilities V2.0 65

more Reference Manual

〈Control End〉 Go to end of file.

← or → Scroll laterally one column. This command is only allowed if
the option -f was given on the command line, or the toggle
o (see below) is not set, i.e. if long lines are not folded.

〈Home〉 Go back to the first column (in case of lateral scrolling).

Changing file:

+ If you asked to view several files, the + command closes the
current file and displays the nth next file given on the command
line. n is either the argument, or, by default the next file.

:n〈CR〉 Idem.

- If you asked to view several files, the - command closes the cur-
rent file and displays the nth previous file given on the command
line.

:p〈CR〉 Idem.

x Display the list of the files that you entered on the command
line in a window. The name of the current file appears high-
lighted. You may use the following commands to move inside this
window: arrow keys, 〈Home〉 and 〈End〉, 〈PgUp〉 and 〈PgDn〉.
Hit 〈enter〉 to display the file whose name appears highlighted.
If you change your mind and don’t wish to switch files, just
hit 〈Escape〉.

:nlist Be careful, the :n without any argument has a different meaning.
This one permits you to change the list of the files that you wish
to view. Just enter :n followed by the new list. The use of
wildcards is allowed.

q or :q〈CR〉
Q or :Q〈CR〉

Quit more.

Searching for regular expressions:

In order to get the most out of the regular expressions feature, refer to
the Appendix.

/reg. exp.〈CR〉 Search forward for reg. exp..

?reg. exp.〈CR〉 Search backward for the reg. exp..

n Search for the next occurence of the last regular expression
entered. This command keeps the same direction of search.

66 The Berkeley Utilities V2.0

Reference Manual more

N Search for the the last regular expression entered in the reverse
direction of search.

i Toggle case significance on searches.

w Toggle match on complete words only in searches.
If found, the expression is highlighted on screen with a different video
attribute (the second attribute in the environment variable VATTR; if the
regular expression has subexpressions, they are themselves highlighted
with further attributes taken in sequence from VATTR).

Calling system interface:

:!〈CR〉 Give control to the shell.

:!command〈CR〉 Execute command .

v Call selected editor. This command is only available if you
previously gave a value to the environment variable “EDI-
TOR” through the MS-DOS command “set”, for instance:

set EDITOR=VI.
You may make the editor start on the current line of the
file, if there is such a start option on your editor, by placing
a %d marker in EDITOR. For instance, vi starts on line 321
of foo if the command vi +321 foo is given; so if you use
vi, set EDITOR=vi +%d to have it start on the current line
of the file you are browsing.

Controlling presentation:

t Change tab size (to the numeric argument n) n absent or 0 means disable
tab interpretation.

T Make tabs visible by giving them a different attribute (the fourth attribute
in the environment variable VATTR).

o Toggle folding of long lines.

a Toggle interpretation of ANSI attribute sequences in the displayed file.

E Make empty space (ie parts of the screen which do not correspond to any
text in the file) visible by giving it a different attribute (the third attribute
in the environment variable VATTR).

The Berkeley Utilities V2.0 67

mv Reference Manual

Move files and directories

Synopsis: mv [options] source target

or mv [options] file|dir . . . file|dir dir

mv moves files or directories matched by the pathnames given as argu-
ment.

Description:

There are two forms of the command:
• short form: there are only two arguments, and both arguments consist

of one file, or both of one directory, or the second argument is a new
name. The first argument is moved over the second (target).
• long form: the last argument is a directory (target) and all other argu-

ments are moved to that target directory.
Watch out when using wild cards (like file.*), as the target must expand
to at most one name.

Options:

The possible options on the command line are:

-r Allows mv to move (and possibly overwrite) non-empty directories (if
not given, only empty directories are moved or overwritten).

-m When moving directories, merges the source with the target (instead of
overwriting the target).

-v Gives on stdout a report on moved files.

-f Do not ask confirmation before overwriting read-only files (by default
the authorization of the user is asked).

-i Asks confirmation before overwriting any file or directory.

-I Asks confirmation before moving any file or directory. This option
implies the -i option.

When the options -i or -I are given, the only answers allowed are:
n: continue, do not overwrite or move.
q: leave.
g: (go) stop asking questions.
y: overwrite or move.
s: answer valid only for a directory. Overwrite or move without asking

further confirmations for files or sub-directories of this directory.

68 The Berkeley Utilities V2.0

Reference Manual mv

Examples:

mv -I c:sources*.**.bak a:

Moves all files *.bak in sub-directories of directory sources to diskette a:,
asking confirmation for each file.

See Also:

cp and rm.

Portability:

The option -r is partly from the BSD version and partly an enhance-
ment. The options -m, -v, -i and -I are enhancements.

The Berkeley Utilities V2.0 69

od Reference Manual

“dump”

Synopsis: od [options] [file . . . file]

Description:

od dumps the contents of its file argument(s) in one or several formats
specified by the option arguments (by default, the options -c and -h are
taken).

Options:

The possible options are:

-c Interprets consecutive bytes as ASCII characters. Non-printable char-
acters are represented according to the same conventions as in the C
language.

-h Interpret bytes in unsigned hexadecimal.

-b Interpret bytes in unsigned octal.

-d Interpret 2-byte words in unsigned decimal.

-s Interpret 2-byte words in signed decimal.

-o Interpret 2-byte words in unsigned octal.

-x Interpret 2-byte words in unsigned hexadecimal.

-D Interpret 4-byte words in unsigned decimal.

-S Interpret 4-byte words in signed decimal.

-O Interpret 4-byte words in unsigned octal.

-X Interpret 4-byte words in unsigned hexadecimal.

+n Starts dumping at the nth byte from the beginning of the file. The
number n can be specified in octal (0ddd) or in hexadecimal (0xddd) as
well as in decimal. The running count of characters in the dump output
will be given in the same format (decimal, octal or hexadecimal) as the
format specified here.

-r Swap the 2 bytes before interpreting 2-byte words.

-R Swap the two 2-byte words before interpreting 4-byte words.

Portability:

The use of different video attributes to highlight key parts of the output
is an enhancement.

The options -D, -S, -O, -X, -r, -R are also enhancements.

70 The Berkeley Utilities V2.0

Reference Manual opts

Set default options for The Berkeley Utilities

Synopsis: opts [-a] [-e] pgm-name ["new-opts"]

Description:

opts sets or displays the initial command line, which is catenated to the
actual command line upon execution, for the Berkeley utility pgm-name. It
should be executed in the directory where the utility’s .exe file resides. The
most likely use of this program is to set default options for the utility.

If "new-opts" is not given, the current initial command line for pgm-
name is just displayed. If "new-opts" is given, it replaces (or is appended to,
if option -a was given) a previous initial command line.

Options:

The possible options are:

-a Append new-opts to a previous initial command line instead of replacing
it.

-e Enter an interactive editing mode where the initial command line of
pgm-name is displayed in a window ready to be edited. This mode
provides support for choosing ANSI attribute escape sequences from a
menu where their visual effect is displayed.

The Berkeley Utilities V2.0 71

paste Reference Manual

merge files as columns of a single file

Synopsis: paste [-dlist] [files]

or paste -s [-dlist [file]]

pastemerges the lines of the files entered as arguments according to the
options specified on the command line. If no files are specified or the file
name -, pasteworks on the standard input.

Description:

pastemerges corresponding lines of each file separating them in the re-
sult with a selected character, or concatenates subsequent lines of a single file
(-s option). pastesends the result on the standard output. By default, the
binding character is the tab character \t, unless option -d has been given
(see the description of the -d option below). Whether the option -d has been
given or not, the lines from the last file are always followed by the character
\n (newline). When the option -s has been given, only the last line of the
file is followed by a newline, unless a newline also appears in the list given
with the -d option.

Option:

-dlist list is a list of characters to use as the concatenation character. This
list is used circularly, i.e. is reused when exhausted. The list is also
restarted for every new cycle on the input files to give a line of output,
if the option -s was not given. As mentioned above, the lines from
the last file will be followed by a newline, not by a character from
the list. The list may contain special characters encoded as follows: \n
(newline), \t (tab), \ (backslash) and \0 (null). As usual, an argument
containing characters which have a special meaning for DOS must be
quoted by "’s.

Examples:

72 The Berkeley Utilities V2.0

Reference Manual paste

C:\>cat junk

love apples

hate raisins

eat oranges

C:\>cat junk.bak

apples 12 \kilos

raisins 14 \pounds

oranges 23 \units

C:\>paste junk junk.bak

love apples apples 12 \kilos

hate raisins raisins 14 \pounds

eat oranges oranges 23 \units

See Also:

cut.

The Berkeley Utilities V2.0 73

rederr Reference Manual

Redirects error output of commands

Synopsis: rederr file command

It is possible in MS-DOS to redirect the standard (stdout) output of com-
mands with the > operator, but MS-DOS does not provide any way to redirect
the error (stderr) output. This program solves the problem.

The first argument is the name of the file where you want to redirect the
error output, and the following argument(s) is the command (given with its
arguments, if it has any) whose error output you want to redirect.

Notes:

This command is not available in UNIX, but its function is. It is a UNIX

standard that programs send their error messages to stderr. This standard
is not followed by all MS-DOS programs.

74 The Berkeley Utilities V2.0

Reference Manual rm

Remove files and directories

Synopsis: rm [options] file1 . . . filen

rm removes files or directories.

Description:

Wild-cards (like file.*) are allowed to specify the arguments. Before
overwriting a read-only file, rm asks for confirmation; also rm will not remove
a non-empty directory unless the option -r has been given.

Options:

The possible options on the command line are:

-r Recursively remove the contents of sub-directories.

-v Write on stdout a report on removed files.

-f Do not ask confirmation before overwriting read-only files or directories.

-i Ask confirmation before removing any file or directory.

The valid answers to questions are:
n: continue, do not remove.
q: leave.
g: (go) stop asking questions.
y: remove.
s: answer valid only for directories. Remove without asking further con-

firmations for files or sub-directories in this directory.

Examples:

C:>rm -i *.*

A safer way to clean up than “del *.*”.

Portability:

The option -r comes from Berkeley’s unix version, and the options -v
and -i are enhancements.

See Also:

ls, cp, mv.

The Berkeley Utilities V2.0 75

sed Reference Manual

Stream editor

Synopsis: sed [-n] [-e script] [-f script file] [files]

sed copies the files entered as arguments to the standard output accord-
ing to the commands given on the command line (option -e), or in a file
script (option -f). If there is no -f option and only one -e option, the flag
-e is optional.

Description:

Normally, sed cyclically reads a line of input and copies it into the
pattern space. Every command is then executed, if its address matches the
pattern space. At the end of the script, sed copies the pattern space on the
standard output before deleting it.

Some commands also use a hold space, where they save all or part of the
pattern space for a possible later use.

Regular expressions are used to specify addresses (lines) or, for some
commands, parts of lines, as in the s command. If you want more information
about the use of regular expressions, consult the Appendix.

Options:

The only available option on the command line is:

-n Suppress the default output of the pattern space at the end of each cycle.

Adresses:

An address is either an integer giving the number of the input line con-
cerned or a “context” address, i.e. a regular expression in the style of ed but
modified as follows:

The regular expression may be constructed as \?RE?, where ? represents
any character. In order to get this character without its special meaning
inside of the expression, you can just escape it with a \. This construction
is exactly identical to /RE/.

A period (.) matches any character except the ending newline of the
pattern space.

A command with no addresses selects every pattern space.

76 The Berkeley Utilities V2.0

Reference Manual sed

A command with one address selects every pattern space that matches
this address.

A command with two addresses selects the range from the first pattern
space that matches the first address through the pattern space that matches
the second address, and again till the end of the last file.

The escape sequence ‘\n’ matches a newline embedded in the pattern
space.

Commands:

It is possible to group several commands under one address with a pair
of curly brackets: {}. Commands are applied on the lines selected by the
specified addresses. In order to have them applied to the lines not selected,
just prefix the command with !. This is also allowed for groups of commands.

The following commands are preceded by their maximum number of
permissible addresses in parentheseses.

The argument 〈text〉 of the first three commands may consist of several
lines, in which case each line, except the last one, must end with \.

(1) a\
〈text〉

Appends 〈text〉 after the pattern space. The result appears on the
output just before reading the next input line.

(2) c\
〈text〉

Deletes the contents of the pattern space, appends 〈text〉 and
copies it to the output, after the pattern specified by zero or one
address, or at the end of a two-addresses range. Starts the next
cycle immediately.

(1) i\
〈text〉

Places 〈text〉 immediately on the output.

The following commands take a file name as argument: this name must
be preceded by exactly one blank and should terminate the line. There can’t
be more than ten files opened in write access at the same time and all such
files are opened before processing.

(2) rrfile Reads the contents of rfile and places them on the output just
before reading the next input line.

(2) wwfile Appends the contents of the pattern space to wfile.

The s command also has a file name as argument among its four optional
flags:

The Berkeley Utilities V2.0 77

sed Reference Manual

(2) s/Reg.Exp./subst/flags Replaces occurrences of the regular expressions
in the pattern space with the string subst. You
may use any character instead of /. One or more
of the following flags may be added to the s com-
mand:

n n is an integer in the range 1 - 512. The substi-
tution will only occur on the nth occurrence of
the regular expression.

g Global: The substitution will occur on all occur-
rences of the regular expression.

p Prints the pattern space only if a substitution
occurred.

w wfile Appends the contents of the pattern space to
wfile, only if a substitution occurred.

Other commands:

(2) b label Branches to the : command bearing label. If no label
is specified, branch to the end of the script.

(2) d Deletes the contents of the pattern space. Starts
immediately the next cycle.

(2) D Deletes the contents of the pattern space, through
the first newline. Starts immediately the next cycle.

(2) g Replaces the contents of the pattern space by the
contents of the hold space.

(2) G Appends the contents of the hold space to the con-
tents of the pattern space.

(2) h Replaces the contents of the hold space by the con-
tents of the pattern space.

(2) H Appends the contents of the pattern space to the
contents of the hold space.

(2) l Copies the contents of the pattern space to the stan-
dard output in an unambiguous form: control char-
acters are represented by the conventional “caret-
letter ” sequence. Long lines are folded.

(2) n Prints the contents of the pattern space on the stan-
dard output. Deletes the pattern space and gets the
next line of input.

(2) N Appends the next line of input to the pattern space
with an embedded newline.

78 The Berkeley Utilities V2.0

Reference Manual sed

(2) p Prints the contents of the pattern space on the stan-
dard output.

(2) P Prints the contents of the pattern space through the
first newline on the standard output.

(1) q Quit sed.

(2) tlabel Conditional branch to the : command bearing la-
bel if a substitution occurred since the most recent
reading of input line or the last execution of a t com-
mand. If label is not specified, branch to the end of
the script.

(2) x Exchange the contents of the pattern space and the
contents of the hold space.

(2) y/string1/string2/ Replaces all occurrences of characters that belong to
string1 with the corresponding character in string2.
Both strings must have the same length.

(1) = Prints on the standard output the current input line
number.

(0) :label This command doesn’t do anything: it only bears a
label for the b or t commands.

(2) { Execute all commands that follow { through the cor-
responding (balanced) } if the given address(es) se-
lect(s) the pattern space.

A script line beginning with a # is a comment line. If this line is the
first line in the script and if the # is immediately followed by a n, the default
output of the pattern space will be suppressed, as in the -n option of the
command line.

See Also:

ed, awk, diff, grep and the Appendix on regular expressions.

The Berkeley Utilities V2.0 79

sort Reference Manual

Sort files

Synopsis: sort [options] [+coldsc[-coldsc]] [file . . . file]

sort works on the files entered on the command line, sorts them line by
line and sends the result to stdout. If no files arguments are given or if - was
given as an argument, sort uses stdin.

Description:

sort works on the fields specified on the command line by the column
descriptors (coldsc) m.n, where m represents a number of fields delimited
by white space to skip from the beginning of the line and n a number of
characters to skip further from the beginning of the field m. A coldsc preceded
by + (+m.n) indicates the beginning of a range of columns that sort will use
for comparisons and coldsc preceded by - (-m.n) indicates the end of the
range. There may be several descriptor pairs +m.n -m.n specifying sorting
for several ranges. The ranges given first are the most significant; if a +coldsc
is given alone (without any -coldsc), the range goes to the end of the line.
By default, sort sorts on the whole line. The following options are available
on the command line:

-c Checks whether the file is already sorted. If it is, doesn’t do anything,
else sends a message.

-m Each argument file must be sorted, sort just merges them.

-ofile file will be used instead of stdout. The file is allowed to be the same as
one of the argument files.

-Tdir The temporary files created by sort during its work will be written in
the directory dir.

-tx Changes the fields delimiter to the character x (instead of the default:
whitespace, i.e. blank, tab and newline).

Each of the seven following options may be added to a column descriptor and
thus affect only the corresponding fields:

-u If several lines are found identical for the concerned fields, sort will
output only one of them.

-b Ignore leading blanks when comparing fields.

-d Use “dictionary” order, i.e. only letters, digits and blanks will be sig-
nificant in comparisons.

80 The Berkeley Utilities V2.0

Reference Manual sort

-f Use a collating sequence where each lower-case letter is immediately
followed by the corresponding upper-case letter: aA bB cC. . ..

-i Lines with characters whose ASCII code doesn’t belong to the range
32-126 will be appended to the output file.

-n A numeric string is sorted according to numerical ordering. This option
implies option -b.

-r Reverse sorting order.

Examples:

Suppose we have the file “fruits” with the following contents:

C:>cat fruits

apples 10 K

apricots 3 K

kiwis 2 K

raspberries 5 K

pears 7 K

bananas 4 K

Let us have a look at the output of the following commands:

C:>sort fruits | tee fruits.t

apricots 3 K

bananas 4 K

raspberries 5 K

kiwis 2 K

pears 7 K

apples 10 K

C:>sort +1 -b fruits

kiwis 2 K

apricots 3 K

bananas 4 K

raspberries 5 K

pears 7 K

apples 10 K

The Berkeley Utilities V2.0 81

sort Reference Manual

Suppose a second file “vegetables” is already sorted:

C:>cat vegetables

artichokes 2 K

carrots 5 K

leeks 1 K

C:>sort -m fruits.t vegetables

apricots 3 K

artichokes 2 K

bananas 4 K

carrots 5 K

raspberries 5 K

kiwis 2 K

leeks 1 K

pears 7 K

apples 10 K

Notes:

This program is greatly superior to MS-DOS’s SORT.

82 The Berkeley Utilities V2.0

Reference Manual split

Split a file into smaller pieces

Synopsis: split [- number [file [name]]]

split splits the given argument file in pieces which have the given num-
ber of lines specified on the command line. By default, split takes its input
from stdin if no filename has been given and the maximum number of lines
per piece is 1000 if no number has been given.

Description:

The names given to the pieces are built from the name given on the
command line to which split adds the suffix aa, then ab, ac, . . . and so on
in alphabetical order. If no name has been specified, split uses by default
the name x.

The Berkeley Utilities V2.0 83

tail Reference Manual

Display the end of a file

Synopsis: tail [+|- [number]] [options] [file]

tail writes on (stdout) the file entered as argument, starting at the
specified location. If no file is specified, tail uses stdin.

Description:

Depending on the sign preceding number, the display will start at some
distance from the beginning of the file (+number) or from the end of the file
(-number). number represents an offset which by default is a number of lines.

If no number is given, the default is 10 lines, unless option -r is present,
whence the default consists of displaying the whole file upside down.

Options:

-c makes the number offset represents a number of characters rather of a
number of lines.

-r This option is special, and incompatible with the option -c. tail -r
displays the lines in the opposite order to the initial file.

Bugs:

Cannot show a tail of more than 55K.

84 The Berkeley Utilities V2.0

Reference Manual tee

pipe connection and derivation

Synopsis: tee [options] file [. . . file]

tee diverts to all argument files the output of a pipe (as well as trans-
mitting it faithfully to stdout).

Description:

The possible options are:

-i Ignore interrupts.

-a If one of the output files already exists, append data to the end of the
file rather than overwrite the file.

the first option, which is useful under UNIX, does not make much sense
under MS-DOS, since pipes are executed sequentially and not asynchronously.

Examples:

ls -tT *.c | tee abc | more

This redirects the output of ls to more where you can browse it, and simul-
taneously makes a copy in the file abc, which you can consult at your leisure
later on.

The Berkeley Utilities V2.0 85

touch Reference Manual

updates files timestamp

Synopsis: touch [options] [-date] file [. . . file]

touch gives the current date and time to the files specified on the com-
mand line.

Description:

touch can work on empty files. Furthermore, if you ask touch to work on a
non-existent file, it will ask you if you want to create this file.
If no date or agefile (see below) has been specified, touch updates its argu-
ments with the current date and time, otherwise, touch interprets the given
date according to the following format:

[[[YY]MM]DD]hhmm[.ss]
with the following meaning:
• hh : Hour, compulsory.
• mm : Minutes, compulsory.
• ss : Seconds, optional; by default: 0.
• DD : Day, optional; by default: current day. If no day is given, no month

or year can be specified.
• MM : Month (1 = January, 2 = February, . . . 12 = December), optional;

by default: current month. If no month is given, no year can be specified.
• YY : Year (counted above 1900), optional; by default: current year.

Options:

-c Create a new file without asking for a confirmation.

-f agefile Take the date as being equal to that of given agefile.

-i Ask for a confirmation before touching any file.

-r Allow touch to work recursively in directories.

-v Write on stdout a report on touched files, including their initial
date.

Notes:

UNIX internally counts seconds starting with 1970.
MS-DOS internally counts seconds starting with 1980.

86 The Berkeley Utilities V2.0

Reference Manual tr

Translate stdin to stdout

Synopsis: tr [options] string1 [string2]

tr takes its input from stdin, replaces characters occurring in string1 by
the corresponding characters in string2, with possible variations, and writes
the result on stdout. This is useful for some simple file transformations (see
examples below).

Description:

string1 and string2 both specify a character set as follows:

• if string2 is too short its last character is replicated.

• in either string character ranges in the form a-z are accepted (specifying
characters between a and z in the ASCII order)

• to specify the characters - or \ you must escape them by preceding them
with a \.

• the following standard ”C” notation is recognized:

\nnn specifies the character of code octal nnn.
\xnn specifies the character of code hexadecimal nn.
\n specifies the character “newline”.
\t specifies the character “tab”.
\b specifies the character “backspace”.
\r specifies the character “carriage return”.

Options:

There are three options which modify the translation:

-d Delete characters in string1 (do not use string2).

-s (squeeze) Output only one of a sequence of identical characters obtained
from string2 (which may correspond to one or several different characters
from string1).

-c string1 is replaced by its complement set (amongst all characters with
codes 0 to 255) taken in ascending order.

The Berkeley Utilities V2.0 87

tr Reference Manual

Examples:

• to look at the text in file1 in uppercase, type

tr a-z A-Z <file1

• copy all words from file1 to file2, one per line (here a word is a sequence
of alphabetic characters):

tr -cs A-Za-z \n <file1 >file2

this works by translating all characters not (option -c) alphabetic to
newlines and then by “squeezing” (option - s) consecutive newlines to
one newline.

• display file, omitting from the display all control characters (codes 1 to
37 octal):

tr -d \001-\037 <file

Bugs:

Mimicking its UNIXcounterpart, tr will delete all ASCII NULL (\000)
from its input and will not handle them in string1 or string2

See Also:

ed, sed.

88 The Berkeley Utilities V2.0

Reference Manual unexpand

Compresses runs of tabs and blanks in character files

Synopsis: unexpand [options]file(s)

Compresses initial runs of tabs and blank characters to optimal such
sequences in each line of the character files given as argument and prints the
result to the console (stdout). If no file arguments are given or one of them
is “-” the corresponding input is taken from the console (stdin).

Options:

-tabsize By default tab stops are every 8 characters; if the option -tabsize is
given, they are instead every tabsize characters.

-a By default only initial runs of blanks and spaces are optimized. If
the option -a is given, all such runs are optimized even if they don’t
start a line.

See Also:

expand.

The Berkeley Utilities V2.0 89

uniq Reference Manual

Weed out or find repeated lines

Synopsis: uniq [options] [input file[output file]]

Description:

uniq writes on the output file (default stdout) only one of a sequence of
identical lines found in the input file.

Options:

The possible options are:

-u Only output unique (non-repeated) lines.

-d Only output repeated lines.

-c Put in front of each output line the number of times it was repeated.

-n Skip n whitespace-delimited fields at the beginning of lines before com-
paring them for identity.

+n Skip n characters before comparing lines. This option can be combined
with the previous one, fields are skipped before characters.

Examples:

tr -cs A-Za-z \n <document | sort | uniq -c

gives on stdout the list alphabetically sorted of all words in the file document,
each given once preceded by its number of occurrences.

See Also:

sort, comm.

90 The Berkeley Utilities V2.0

Reference Manual wc

Count words and lines

Synopsis: wc [options] file [. . . file]

wc counts characters, words or lines of the file arguments.

Description:

If no file argument or the argument “-” has been given, wc works in stdin.

Options:

The possible options are:

-c Count characters.

-w Count words.

-l Count lines.

If none of these options has been given, all three are considered active.
If there is more than one file argument, wc also gives a total for all the files.

The Berkeley Utilities V2.0 91

which Reference Manual

Find which version of a program is active

Synopsis: which [-a] name

which name returns which version of name would be picked up by the
operating system for execution (that is, if it is a *.bat, *.com or *.exe
version and the complete pathname). We recall that MS-DOSscans the current
directory, then all directories specified by the PATH variable, to find executable
files; which does the same search. which prints nothing if no version was
found.

Option:

-a Find all versions of name along path; tell which is active, and print com-
plete information about all encountered files (in “ls -l” format).

92 The Berkeley Utilities V2.0

Reference Manual xstr

Extract character strings from C programs

Synopsis: xstr [options] file [. . . file]

xstr works on the C source files given as arguments on the command
line.

Description:

xstr reads a C source file, extracts all character strings from it and
gathers them to a file named by default x.h. Each string appears in x.h only
once, whatever its actual number of occurences in the C source files. Strings
appear in x.h in lines of the form #define Sxxxx ". . ." , where xxxx is a
4-digit integer. The C source file is rewritten to a file having the same name,
but with a suffix x added to the extension (e.g., given a file a.c, xstr will
write a file a.cx). In this new file, xstr will have replaced character strings
by references of the form Sxxxx and added the directive “#include x.h”.

Options:

The possible options on the command line are:

-c Leave the character strings in comments besides Sxxxx references in
the new source files output by xstr.

-oname Use name instead of x as a prefix of the files x.h.

-r This ”restring” option reinserts character strings in files output by
a previous call to xstr reading them from x.h. Hence this option
will only work if source files are the output of xstr. This option can
be combined with the option -c in order to suppress comments from
files output by a previous call to xstr -c. It can also be combined
with -o in order to use another file than x.h to get the strings from.

xstr can be used to survey and normalize the set of strings appearing in
a set of C source files, in particular to translate them into another language.
It is useful anyway since it reduces the size of the object files by making sure
that no string is repeated twice.

The Berkeley Utilities V2.0 93

xstr Reference Manual

Examples:

C:>cat test.c

main(){printf("Hello, world!");}

C:>xstr test.c

writing test.cx ...

writing x.h

C:>cat test.cx

#include "x.h"

main(){printf(S0000);}

C:>cat x.h

#define S0000 "Hello, world!"

C:>ed -s x.h

s/Hello, world/Bonjour, le monde/

w

q

C:>xstr -r test.cx

reading x.h

writing test.cxx ...

C:>cat test.cxx

main(){printf("Bonjour, le monde!");}

This example shows how in principle xstr can be used to translate messages,
particularly with repetitions. In addition, if the file x.h output by the first
call to xstr is kept, the production of a French version can be largely auto-
mated as follows: Apply xstr to test.c as above, translate x.h to French
and rename it test.f. Then write a makefile containing the methods to
use to (re)-make a French version:
xstr test.c

cp test.f x.h

xstr -r test.cx

msc $(CFLAGS) test.cxx;

these will be enough for any modification of test.c which does not modify the
number of strings or the order in which they appear. Otherwise, reexecute:

xstr test.c

And then compare x.h and test.f: most of the time, there will be but a
few strings to insert and to delete in test.f. The string numbers will then
be false, but can be corrected by executing:
awk -f renum test.f > x.f

mv x.f test.f

94 The Berkeley Utilities V2.0

Reference Manual xstr

where renum is the following awk program:

{print substr($0,1,6) sprintf("%04d",NR-1) substr($0,11,length($0)-10)}

See Also:

make, awk.

The Berkeley Utilities V2.0 95

Appendix Reference Manual

Regular expressions

Regular expressions are mostly used to look for character strings in text
files. If you just want to find instances of the word “search”, the correspond-
ing regular expression is simply given as “search”. But the use of special
characters allows the simultaneous search of several different strings or of
classes of strings described by a single regular expression.

In the current implementation, matches are recognized only within a line;
there is no way to specify the character “newline” in a regular expression.

Special characters are used in regular expressions to specify regular ex-
pression operators. Actually, the list of characters having a special meaning
depends on the utility where the regular expression is used (ed, grep, awk,
. . .) though the list of available operators is the same. This is done as follows:
in each context there is a list of ‘magic’ characters which have special mean-
ing, and other characters specifying operators must be quoted by preceding
them by a \ to be understood; and to specify the match of a ‘magic’ character
you must quote it with a \.

For instance, the operator + (meaning “one or more repetitions”) is in-
voked by + or \+ depending on whether it is ‘magic’ or not. It is ‘magic’ in
awk and grep -E (“egrep”), but not in the other utilities like ed and normal
grep. So in awk you write a+ to match one or more a’s, but you write a\+
to match the string “a+”; while in grep you must write a\+ to match one or
more a’s and a+ to match the string a+.

‘\’ is always ‘magic’, so you must quote the \ itself, and specify it by
‘\\’. The following characters are ‘magic’:

[].*\ always.

^ at the beginning of an expression or as the first character encoun-
tered within brackets [].

$ at the end of an expression.

()<>+? in awk and in grep -E.

An exception to the above rules is that inside brackets [], no character
(except ^ as explained above) is magic.

Meaning of the special characters:

96 The Berkeley Utilities V2.0

Reference Manual Appendix

[] A set of characters within brackets [] is a regular expression which matches
any of the characters within brackets. It is possible to specify a range of
characters (in the ASCII collating sequence) using the - character: for
instance, [a-z] matches any character whose ASCII code is between that
of a and that of z, that is any lower-case letter. However the character -
given as the first one after [or the last one before] is taken for itself. If
the first character after [is ^ the match will be with characters which are
not in the specified set (i.e. which are in the complement set in the ASCII
table). To specify a [or a] it must appear as the first character after [.
For instance []a-z] matches ‘]’ or any lower-case letter; [^]a-z] is also
allowed and matches any character but] and lower-case letters.

. The dot is a regular expression matching any one character.

^ We have seen its meaning within brackets. It has also a special meaning as
the first character of a complete regular expression: it indicates that the
expression will match a string only if that string starts at the beginning
of a line.

$ Similarly, the dollar has a special meaning as the last character of a com-
plete regular expression, and indicates that the expression will match a
string only if that string ends with the last character of a line.

It is of course possible to use both ^ and $ to build an expression which
matches only complete lines.

More complex regular expressions can be built from the previous ones
using the following operators (special characters):

The concatenation of several regular expressions is an expression which
matches the concatenation of the strings matched by each expression.

* A star immediately following an expression indicates repeti-
tion: the expression will match any number (0 or more) of
consecutive occurences of the string matched by the expres-
sion which the ‘*’ follows. When there are several possible
such matches, the longest one is chosen.

+ Is similar, but this time the match will occur for 1 or more
occurences of the string matched by the expression which the
‘+’ follows. As in the previous case, the longest possible match
is chosen.

? Is again similar, but the match occurs for 0 or 1 occurence
(the longest possible match is chosen).

\{m\} Also indicates repetition; m must be a positive integer less
than 256. The match occurs for exactly m occurrences.

The Berkeley Utilities V2.0 97

Appendix Reference Manual

\{m,\} Is similar; the match occurs for a number of occurences equal
to or greater than m (the longest match is taken when there
are several possible solutions).

\{m,n\} n must also be a positive integer less than 256. The match
occurs for a number of occurences between m and n. The
longest match is again taken in case of doubt.

\(expression\) The parentheses do not modify the meaning of the enclosed
expressions; they are just used to capture a subexpression
which gives meaning to the following form:

\n Where n is a single digit matches exactly the same string as
the one which has just been matched by the nth sub-regular
expression enclosed within (and) in the same expression (the
occurence of \n must of course be after the nth occurence of
(in the expression).

\< Word beginning. A match will occur only with a string which
at the corresponding place does not contain a digit or a letter
or is not immediately preceded by a digit or a letter (the
character “_” is considered as a letter).

\> Word end. A match will occur only with a string which at
the corresponding place does not contain a digit or is not
immediately followed by a digit or a letter (the character “_”
is considered as a letter).

Examples:

The regular expression:

(<[a-zA-Z]{5,7}>).*\1

matches only 2 occurrences of the same 5 to 7 letter word, on the same line
and separated by any number of characters. This is awk or grep -E (“egrep”)
syntax; the same expression must be written in ed or grep as

\(\<[a-zA-Z]\{5,7\}\>\).*\1

98 The Berkeley Utilities V2.0

