

Reads51 Users Guide

Version 4.20
June 2002

RIGEL CORPORATION
P.O. Box 90040, Gainesville, Florida
(352) 373-4629, FAX (352) 373-1786

www.rigelcorp.com, tech@rigelcorp.com

Copyright (C) 1990- 2002 by Rigel Press a Division of Rigel Corporation.
Legal Notice:
All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any
form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permis-
sion of Rigel Corporation.

The abbreviation PC used throughout this guide refers to the IBM Personal Computer or its compatibles. IBM PC is a
trademark of International Business Machines, Inc. MS Windows is a trademark of Microsoft, Inc.

Information in this document is provided solely to enable use of Rigel products. Rigel assumes no liability
whatsoever, including infringement of any patent or copyright, for sale and use of Rigel products except as provide in
Rigel’s Customer Agreement for such products.

Rigel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which
may appear in this document nor does it make a commitment to update the information contained herein.

Rigel retains the right to make changes to these specifications at any time without notice. Contact Rigel Corporation
or your Distributor to obtain the latest specifications before placing your order.

Rigel Corporation’s Software License Agreement
This Software License Agreement ("Agreement") covers all software products copyrighted to Rigel Corporation,
including but not limited to: Reads51, rLib51, RbHost, RitaBrowser, rFLASH, rChpSim, rP51, Reads166, and rFLI.
This Agreement is between an individual user or a single entity and Rigel Corporation. It applies to all Rigel
Corporation software products. These Products ("Products") includes computer software and associated electronic
media or documentation "online" or otherwise.
Our software, help files, examples, and related text files may be used without fee by students, faculty and staff of
academic institutions and by individuals for non-commercial use. For distribution rights and all other users, including
corporate use, please contact:

Rigel Corporation, PO Box 90040, Gainesville, FL 32607
electronic mail: tech@rigelcorp.com

Terms and Conditions of the Agreement
These Products are protected by copyright laws, intellectual property laws, and international treaties. Rigel
Corporation owns the title, copyright, and all other intellectual property rights in these Products. We grant you a
personal, non-transferable, and non-exclusive license to use the Products. These Products are not transferred to you,
given away to you or sold to you.

Non-commercial use: These Products are licensed to you free of charge.

Commercial use: You must contact Rigel Corporation to find out if a licensing fee applies before using these Products.

You may install and use an unlimited number of copies of these Products.

You may store copies of these Products on a storage device or a network for your own use.

You may not reproduce and distribute these Products to other parties by electronic means or over computer or
communication networks. You may not transfer these Products to a third party. You may not rent, lease, or lend these
Products.

You may not modify, disassemble, reverse engineer, or translate these Products.
These Products are provided by Rigel Corporation "as is" with all faults.

In no event shall Rigel Corporation be liable for any damages whatsoever (including, without limitation, damages for
loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out of the
use of or inability to use the Product, even if Rigel Corporation has been advised of the possibility of such damages.
Because some states do not allow the exclusion or limitations of consequential or incidental damages, the above
limitations may not apply to you.

Rigel Corporation makes no claims as to the applicability or suitability of these Products to your particular use,
application, or implementation.

Rigel Corporation reserves all rights not expressly granted to you in this Agreement.

If you do not abide by or violate the terms and conditions of this Agreement, without prejudice to any other rights,
Rigel Corporation may cancel this Agreement. If Rigel Corporation cancels this Agreement; you must remove and
destroy all copies of these Products.

If you acquired this Product in the United States of America, this Agreement is governed by the laws of the Great
State of Florida. If this Product was acquired outside the United States of America, all pertinent international treaties
apply.

Table of Contents

1 OVERVIEW.. 1
2 SOFTWARE SETUP ... 3

2.1 SYSTEM REQUIREMENTS ... 3
2.2 SOFTWARE INSTALLATION, READS51 ... 3
2.3 QUICK START .. 3

2.3.1 Setup... 3
2.3.2 Verifying that the Monitor is Loaded ... 3
2.3.3 Downloading and Running an Assembly Program ... 4
2.3.4 Downloading and Running a C Program .. 4

3 READS51 CONCEPTS ... 5
3.1 IDE MODES .. 5
3.2 PROJECTS AND MODULES .. 5

3.2.1 Projects ... 5
3.2.2 Modules... 5

3.3 WORKSPACES ... 5
3.4 TOOLCHAINS ... 6

4 READS51 IDE ... 7
4.1 MENU COMMANDS... 7

4.1.1 Project ... 7
4.1.2 File .. 7
4.1.3 Module .. 7
4.1.4 Compile ... 7
4.1.5 Debug.. 8
4.1.6 Edit .. 8
4.1.7 View .. 8
4.1.8 Tools ... 8
4.1.9 Options.. 8
4.1.10 Window ... 8
4.1.11 Help... 8

4.2 TOOLBARS .. 9
4.3 EDITOR ... 9
4.4 TTY WINDOW ... 9
4.5 OUTPUT WINDOW.. 10
4.6 TOOLS .. 10

4.6.1 Find-in-Files .. 10
4.6.2 Run Preprocessor ... 10
4.6.3 Customize Toolbar.. 10
4.6.4 Launch rP51.. 10

5 TUTORIALS... 11
5.1 SINGLE FILES .. 11
5.2 DEBUGGING WITH RCHIPSIM51.. 12
5.3 DEBUGGING ON A RIGEL BOARD (RROS) ... 13
5.4 WATCHING SELECTED VARIABLES DURING DEBUG.. 15

Step 2: Create a List of Selected Watch Variables..15
5.5 SIMULATED I/O (SIMIO) ... 16
5.6 SIMULATED SERIAL I/O (SIMTTY) .. 17

6 GENERATING HEX FILES ... 18
6.1 RUNNING CODE ON A RIGEL BOARD ... 18

6.1.1 Running C Code ... 19
6.1.2 Running Assembly Code with Start Address in the 0 to 7FFFh Range.. 19

6.1.2.1 Running Relative Assembly Code (V4 Toolchain) ...19

6.1.2.2 Running Absolute Assembly Code (V1-V3 Toolchain)...20
6.1.3 Running Assembly Code with Start Address in the 8000h to FFFFh Range ... 20

6.1.3.1 Running Relative Assembly Code (V4 Toolchain) ...20
6.1.3.2 Running Absolute Assembly Code (V1-V3 Toolchain)...20

6.2 READS51 FOR THE SINGLE CHIP MODE .. 20
6.2.1 Programming for the Single-Chip Mode ... 21
6.2.2 Memory Map for the Single-Chip Mode .. 21

6.3 RUNNING CODE WITH RCHIPSIM51... 22
6.3.1 Running C Code ... 22
6.3.2 Running Relative Assembly Code (V4 Toolchain).. 22
6.3.3 Running Absolute Assembly Code (V1-V3 Toolchain) ... 22

7 READS51V4 TOOLCHAIN.. 23
7.1 PREPROCESSOR.. 23
7.2 C COMPILER ... 24
7.3 RELATIVE ASSEMBLER (READS51V4 TOOLCHAIN) ... 25

7.3.1 Constants... 25
7.3.2 Expressions ... 25
7.3.3 Functions ... 26
7.3.4 Pseudo Operations .. 26
7.3.5 Constant Definitions... 27
7.3.6 Initialized Data Storage.. 27
7.3.7 Code Origin and Offset .. 28
7.3.8 Absolute Segments.. 29
7.3.9 Relative Segments... 32

7.4 LINKER.. 34
8 RCHIPSIM51.. 35

8.1 SIMTTY WINDOW AND SERIAL I/O.. 35
8.2 SIMIO WINDOW AND SIMULATED PORTS... 35

9 READS51 V3.0 TOOLCHAIN.. 36
9.1 ABSOLUTE ASSEMBLER.. 36

9.1.1 Constants (v3.x).. 36
9.1.2 Expressions (v3.x) .. 36
9.1.3 Functions (v3.x) ... 36
9.1.4 Pseudo Operations ... 37

APPENDICES .. 1
APPENDIX A MENU COMMANDS .. 1
APPENDIX B TOOLBAR BUTTONS ... 4
APPENDIX C RELATIVE ASSEMBLY CONCEPTS ... 5
APPENDIX D THE READS51 V3 ABSOLUTE ASSEMBLER .. 8
APPENDIX E A BRIEF REVIEW OF C .. 10
APPENDIX F SMALLC .. 21
APPENDIX G OVERVIEW OF THE MCS-51 INSTRUCTION SET.. 22
APPENDIX H OMF-51 .. 24

 1

1 OVERVIEW
Reads51 is an Integrated Development Environment (IDE) that currently supports Rigel’s 8051 family of
embedded control boards, including Rigel’s new line of single-chip boards. The IDE includes an assembler, C
compiler, editor, linker/locator, debugger, and chip simulator. April 2002 Rigel introduced its latest
Reads51, V4.20. Updates include:

New compiler which generates more streamlined code.
Ability to customize the settings to support various memory maps.
C code may now be run without any external memory to support Rigel’s new line of single-chip

8051boards and chip programmers.

Graphically, the IDE consists of the main menu, customizable toolbars, and various windows. All windows,
except the editor window are dockable. Dockable windows may be attached to any side of the IDE, or left
floating anywhere on the desktop.

The following list of IDE features corresponds to the comments on the diagram given on the next page.

1. Window Caption Shows the current active project, and file.
2. Main Menu Commands Contains the highest level menu commands
3. Toolbars Displays a set of icons at the top of the editor window. These are shortcuts to

the more often used menu commands.
4. Workspace Shows all open projects in tabs, the active project’s tab is highlighted in red.
5. Edit Window Source modules and files open in this window for editing.
6. TTY Window PC to Board communications shown here.
7. Output Window Shows the result of various processes. The Build tab shows the compiler or

assembler results. The Find-in-File tab reports the results of searches.
8. SFR Watch Window Shows the value of the SFR’s while debugging.
9. Memory Watch Window Shows the value in the different types of memory while debugging.
10. Status Bar Shows the result of various operations, software version, target, and the

position of the cursor.

 2

3

2 SOFTWARE SETUP
2.1 System Requirements
Reads51 is designed to work with an IBM PC or compatible, 386 or better, running Windows 95or better.

2.2 Software Installation, Reads51
If you receive a CD from Rigel, follow these steps:

1. Place the CD-ROM in your drive.
2. Go to the Rigel Products | 8051 Software | Reads51 | Windows and click on the

SetupReads51.exe file. The program will then install in your system.
3. Follow the standard install directions answering the questions with the appropriate replies.

If you download the software from the web (www.rigelcorp.com) follow these steps:
1. Click on the SetupReads51.exe file. The program will then install in your system.
2. Follow the standard install directions answering the questions with the appropriate replies.

2.3 Quick Start
The following instructions allow you to quickly setup your Reads51 environment to run on one of Rigel’s 8051-
family embedded controller boards (R-31J, R-31JP, R-535J, R-515JC, RIC320, RMB-S, and Rita-51.)

2.3.1 Setup
1. Install Reads51 on the PC.
2. Power the board with 5 Volts and connect the board to

the host PC using a serial cable.
3. Run the Reads51 software by selecting Start |

Programs | Reads51. You may also start Reads51 by
double clicking on the Reads51 short cut icon if installed.

4. Select the Toolchain and Target platform by selecting
Options | Toolchain/Target Options and selecting
Reads51 Toolchain v4 and the target RROS.

5. Specify the serial port (COMM Port) that is connected to
the board by opening the Options | TTY Options dialog.

6. Open the TTY window using the menu command View |
TTY Window.

7. Press the “Reset” button on the embedded controller
board and observe the prompt in the active TTY window.

2.3.2 Verifying that the Monitor is Loaded
 Make sure the TTY window is active, clicking the mouse inside

the TTY window to activate it if necessary. Then type the letter
‘H’ (case insensitive) to verify that the monitor program is
responding. The ‘H’ command displays the available single-
letter commands the monitor will recognize.

The Reads51 monitors use single-letter commands to execute basic functions. Port configurations and data,
as well as memory inspection and modifications may be accomplished by the monitor. Most of the single-
letter commands are followed by a 4 hexadecimal digit address or a 2 hexadecimal digit data byte.

The list of monitor commands is displayed with the H command while the monitor program is in effect. The H
command displays the following table.

B xxxx sets Break point at address xxxx
C xxxx-xxxx displays Code memory
D xx-xx displays internal Data ram
D xx=nn modifies internal Data ram
D xx-xx=nn fills a block of internal Data ram
G xxxx Go - starts executing at address xxxx
H Help - displays monitor commands

 4

K Kills (removes) break point
L down Loads Intel hex file into memory
P x displays data on Port x
P x=nn modifies data on Port x to nn
R displays the contents of the Registers
S displays Special function register addresses
S xx-xx displays Special function registers
S xx=nn modifies Special function registers
S xx-xx=nn fills Special function registers
X xxxx-xxxx displays eXternal memory
X xxxx=nn modifies eXternal memory
X xxxx-xxxx=nn fills eXternal memory

A single-letter command may be followed by up to 3 parameters. The parameters must be entered as
hexadecimal numbers. Each ‘x’ above represents a hexadecimal digit (characters 0..9, A..F). Intermediate
spaces are ignored. Alphabetic characters are converted to upper case. The length of the command string
must be 16 characters or less. The command syntax is:

Letter [address][-address][=data]<CR>.
2.3.3 Downloading and Running an Assembly Program

1. Use the Project | Open Project command to open the project “RelativeAssembly01” in the Work
directory.

2. Assemble the program
and download it to the
board using the
Compile | Build and
Download command.
The project will be
compiled and the
resultant HEX code will
be downloaded to the
target board.

3. Press and hold the
Reset button on the
board. While the
Reset button is
pressed, flip the MON /
RUN switch to the
RUN position. This
swaps the memory
map on the board so
that RAM occupies low
memory. The HEX code downloaded to RAM executes when you release the Reset button.

2.3.4 Downloading and Running a C Program
1. Use the Project | Open Project command to open the project “Hello” in the Work directory.
2. Compile the program and download it to the board using the Compile | Build and Download

command. The project will be compiled and the resultant HEX code will be downloaded to the target
board.

3. Press and hold the Reset button on the board. While the Reset button is pressed, flip the MON /
RUN switch to the RUN position. This swaps the memory map on the board so that RAM occupies
low memory. The HEX code downloaded to RAM executes when you release the Reset button.

5

3 Reads51 CONCEPTS
Reads51 has two modes, referred to as the "Build Mode" and the "Run/Debug Mode". The IDE Modes
reinforce the typical aspects of code creation and development versus code execution and debugging. For
example, the Run/Debug mode disables code editing as well as adding or removing modules while the code
is being executed.

3.1 IDE Modes
Build Mode- supports source code creation and revision. All project, module, and edit functions are enabled.
You may create new projects, new modules, add or remove modules, etc.
Run/Debug- is oriented to facilitate code execution and debugging. Project management and source code
editing functions are disabled. The commands to run, single step, set/clear breakpoints, watch variables are
enabled only in this mode.

The current mode is always displayed in the drop-down list box in the
toolbar. There are four alternative actions to toggle the mode.

1. Use menu item Compile | Toggle BUILD/DEBUG Mode.
2. Use the toolbar button.
3. Use the hot key F2.
4. Use the drop-down list box in the toolbar.

3.2 Projects and Modules
Reads51 uses a project-oriented code development and management system. Projects contain modules,
which may be written in either C or assembly. Modules may freely be shared or copied from one project to
another. Moving modules between projects is accomplished by the “cut”, “copy”, and “paste” commands
under the Module menu or by the “Import Module” command under the Module menu.

3.2.1 Projects
A project is a collection of files managed together. Each code module in a project corresponds to a separate
project file. By default all projects are kept in their individual subdirectories. You may copy or save projects
as a single entity. When saved under a different name, a new subdirectory is created and all components of
the project are duplicated in the new subdirectory. You may use the long names provided by the 32-bit
Windows operating systems to keep different versions of your software in a controlled manner. For example,
the project “Motor Control 07-20-2000” may be saved under the new name “Motor Control 07-25-2000” as
new features are added. This way you may revert to an older version, if needed.

3.2.2 Modules
A module is a single file that belongs to a project. Typically, modules are either assembly language
subroutines or C language functions. You may copy modules from one project to another, or share modules
in different projects. For example, you may copy previously developed modules from an existing project to a
new project by cutting and pasting or by importing. You may also add modules to a project by “drag-and-
dropping” them from the Explorer Window. By using existing or previously developed and debugged
modules, you may significantly improve code reusability, much in the same manner as libraries. Reusing
modules differs from using library functions of existing routines in that modules are kept in source form rather
than object form.

3.3 Workspaces
The Reads51 IDE allows multiple projects to be open concurrently. The collection of the various visual
components of the projects constitute a workspace. You may save workspaces and re-open them later.
When a workspace is opened, all projects and their various components are restored. If multiple projects are
open you may toggle between the workspaces by selecting the tabs at the bottom of the workspace window.

The Project menu contains three commands “Open Workspace”, “Save Workspace”, and “Close Workspace”,
as well as the command “Recent Workspaces” to view or open recently saved workspaces.

 6

3.4 Toolchains
A toolchain refers to a set of software development programs such as a compiler, assembler, and a linker,
intended to be used together to
perform the steps in generating
executable code from various source
files.

Reads51 currently contains two
toolchains, v4 and v3. V3 contains the
Reads51v3.x absolute assembler. The
V4 contains the new (v4.20) relative
assembler and linker. The v4 toolchain
also includes a SmallC compatible C
compiler. Use the “Options |
Toolchain / Target Options” menu
item to select the toolchain and target
to be used. If you would like to program
in C, you must select the Reads51v4
toolchain. We recommend that you
use the v4 toolchain for all new
projects. We no longer support the
Version 3 toolchain.

We have three targets now available,
the RChipSim51, the RROS, and the
RRM. The RChipSim is our simulator. The RROS and RRM modes use the serial port to download code to
the boards. We use the RROS, ROM Resident Operating System, on all of our 8051 boards and it is the
default monitor. The RRM, RAM Resident Monitor, was previously used only for Rigel’s custom OEM
hardware. Newer versions of the R-31JP and the R-515JC support the RRM mode. RRM has two advantages
over RROS: it supports higher Baud rates, and larger user programs. RRM is useful in downloading and
running larger C programs on the Rigel boards. Check your board hardware manual to see if it supports
RRM.

Rigel’s 8051-chip simulator is supported by both toolchains. Reads51 toolchain options are organized for
future expansion of the toolchain selections and microcontroller families. Currently, the IDE only supports the
8051 family.

7

4 Reads51 IDE
Graphically, the IDE consists of the main menu, customizable toolbars, and various windows. All windows,
except the editor window are
dockable. Dockable windows may
be attached to any side of the IDE,
or left floating anywhere on the
desktop.

4.1 Menu Commands
The functionality of the Reads51
components remains fully
integrated. The user interface has
been improved by placing many of
the specific commands into sub-
menus. The Main Menu contains
the higher-level options such as
projects, modules, or tools. Most
Windows also support specific
pop-up menus, activated by right-
clicking the mouse. For details on
the menu commands see the
appendix.

4.1.1 Project
Under the “Project” menu, you will find many of the familiar file
commands such as, “New”, “Open”, “Save”, and “Close”. You’ll
also find commands, which involve the workspace and compile
options.

4.1.2 File
The “File” menu commands include the standard “New”,
“Open”, “Save”, “Save As”, “Save All”, and “Close” file
commands. The print commands are also located here.

4.1.3 Module
A module is a single file that belongs to a project. Typically
modules are subroutines. You may copy modules from one
project to another, or share modules in different projects. For
example, you may copy a previously developed module from
an old project to a new project by importing it or by using the
“Cut” or “Copy” and “Paste” commands in the Module menus.
You may set “Module Properties”, “Create Modules”, “Open
Modules”, “Save”, “Close”, or “Delete Modules” of the current
project using the commands under the “Module” menu. The
“Code Wizard” is not implemented yet.

4.1.4 Compile
The “Compile” menu commands include “Build”, “Build
and Download”, “Make Library”, “Rebuild All”, “Clean”,
“Toggle BUILD / DEBUG Mode”, and “Download Hex”.
“Build” compiles the current project. If no project is
open and the editor contains a file, this current file is
compiled. “Build and Download” compiles the
highlighted project and downloads it to the target
board. “Toggle BUILD / DEBUG Mode” switches
between the Build and Debug modes. “Rebuild All”

 8

and “Download Hex” are basic features that implement the stated command.

4.1.5 Debug
The “Debug” menu allows you to control the debug
features of Reads51. You may “Edit Breakpoints”,
“Toggle Breakpoints”, “Clear Breakpoints”, and “Run to”,
“Run Skip”, “Step Into”, “Over” or “Out of Breakpoints”.

4.1.6 Edit
The “Edit” menu commands are the standard edit
commands found in most programs. They allow you to
“Redo”, “Cut”, “Copy”, “Paste”, “Find”, “Find Next”,
“Replace”, and “Select All” the text.

4.1.7 View
The “View” menu
commands are again the
standard view commands
with a couple of specific
commands for Reads51
included. These
commands allow you to
open windows and
customize the screen
when working with
Reads51.

4.1.8 Tools
The “Tools” commands allow you to search in files for given strings with the “Find in Files” command, change
the toolbars with the “Customize Toolbars” command, run the preprocessor, Launch rP51, or “Burn RIC320
EEPROM” on one of our boards.

4.1.9 Options
The “Options” menu allows you to select the toolchain and target you want to use. It also allows you to select
the “TTY Options”, the compile and assembly options for single files, “Editor Options”, Debug Options, and
“Environment” options.

4.1.10 Window
These are the standard Window commands found in most programs; “Cascade”, “Tile”, “Arrange Icons”, and
“Close All”.

4.1.11 Help
A wide variety of information can be found in the Help files. We’ve added the MCS-51 instruction set, HTML
help system, Quick Start, and updated our standard help files.

9

 4.2 Toolbars
A Toolbar is a row of buttons at the top of the main window, which represent application commands. Clicking
one of the buttons is a quick alternative to choosing a command from the menu. Many of the Toolbar buttons
are the standard Windows buttons. “New”, “Open”, “Save”, “Save All”, “Cut”, “Copy”, “Paste”, “Print”, and
“Help” are easily recognizable from other Windows programs.

Buttons on the toolbar activate and deactivate according to the state of the application, whether you are in the
Build or Run/Debug Mode. Since toolbars are user customizable, it is better to investigate the function of the
toolbar buttons for the current IDE by observing the ToolTips or the icons presented in the menus. For
example, click on the “Compile | Toggle BUILD/DEBUG Mode” menu command. The corresponding toolbar
button icon (a hammer) is shown next to the menu item. Clicking the menu item is equivalent to clicking on
the corresponding toolbar button. Also, observe that F2 is given as the hot key to toggle the mode.

4.3 Editor
The editor uses a multiple document interface so that several files may be opened at a time. The editor
window contains tabs in the bottom to quickly select the active child window. The tabs are especially useful if
you maximize the active child window. You may use the Windows “drag-and-drop” feature to open any text
file with the editor.

The editor uses standard Windows Notepad- or
Windows WordPad-style commands. In addition, the
editor recognizes assembly and C syntax. Several
editor settings as well as syntax highlighting may be
customized by the “Options | Editor Options” menu.

The corresponding dialog lets you select fonts, set auto
indenting, and specifying whether tabs should be
replaced by a number of spaces. Note that the “All
Files” tab in the dialog sets the properties globally, i.e.
affects all other types of files. The check boxes under
the “All Files” tab have three states. The checked and
uncheck states override all other file type settings. In
the grayed state, the properties are determined
individually for each file type.

Syntax highlighting lets you specify the colors of keywords, strings, comments as well as default text and the
background. The keywords to be highlighted are read from the files assembly.kwd, c.kwd, and default.kwd,
found in the .\Bin directory. You may modify the set of keywords by opening these files in the editor and
adding new keywords or removing existing ones.

4.4 TTY Window
The TTY Window is associated with a terminal emulation routine so that characters typed in the TTY window
are sent to the serial port. Similarly, and the characters received from the serial port are displayed in the TTY
window. The TTY Window properties are configurable using the “Options | TTY Options” menu. If the
selected serial port is unavailable, the TTY Window displays the message “Disconnected.”

 10

4.5 Output Window
The output window has tabs to report the result of various activities. The “Build” tab shows the compiler or
assembler results. Similarly, the “Find-in-Files” tab reports the results of searches from the Find-in-Files tool.
The results shown in the Output Window often relate to specific lines of source files. Simply double click on
the output window results to open the source file and display the corresponding line. For example, if a build
operation finds errors in the source, double clicking on the reported error takes you to the offending source
line.

4.6 Tools

4.6.1 Find-in-Files
“Find-in-Files” is similar to the UNIX GREP (Get Regular ExPression) utility. It scans a specified set of files to
find the occurrences of given strings. A drop-down list box and a button are placed on the default toolbar to
facilitate “Find-in-Files”. The results of the search are displayed in one of the tabs of the output window.

4.6.2 Run Preprocessor
The compiler and the assembler call the preprocessor automatically, as part of the build process. This menu
command is provided mostly as a debugging aid or a teaching aid. The user may run code containing macros
and compiler directives and observe the resultant file.

4.6.3 Customize Toolbar
The corresponding dialog allows you to define new toolbars, or add or remove buttons on existing toolbars.
“Cool Look” refers to MS IE4-style dockable toolbars (rebar).

Under the dialog “Commands” tab, you may select any button and add it to an existing toolbar simply by
dragging the button onto the toolbar. Similarly, you may remove buttons from an exiting toolbar by dragging
the button away from the toolbar. Note that menu items may be added to any toolbar, just like any other
button.

4.6.4 Launch rP51
This dialog opens the rP51 software used when programming EPROM or FLASH 8052 processors on the R-
51PB board.

11

5 TUTORIALS
All of these tutorials can be found in the Reads\Work\Tutorial Directory. These are single files and will need
to be opened using the “Files | Open File” command. Each tutorial builds on the concepts from the previous
tutorial and therefore should be done in order.

5.1 Single Files
This is the first of six tutorials and is designed to show how to compile and debug single files. Most of the text
below is found in the Tutorial0x.asm files.
Step 1: Open the tutorial file.

Go to the menu item “File | Open File”
and open the file “Tutorial01.asm” in
the Rigel\Reads51\Work\Tutorial
directory.
Click on the file and it will open in the
editor window.

Step 2: Select Toolchain and Target.
Click on the menu item "Options |
Toolchain/Target Options".
Select "Reads51 V4 toolchain" and
"RChipSim51".

Step 3: Specify Memory Map.

Click on the menu item "Options |
Single File Build Options | Assembly
Options".

 Select the tab "Linker Options".
Specify the memory map to be
CODE=0 and XDATA=0.

Step 4: Specify Debug Information to be Generated.
Again, using the menu item "Options | Single File Build Options | Assembly Options",

 Check the box "Generate debug information".

Step 5: Build (Assemble and

Link).
With “Tutorial01.asm” as the
active window in the editor,
click menu item "Compile |
Build".

Step 6: Fix Errors.
The error "Incorrect operand
types" is displayed in the
output window.
If the output window is not
visible, click the menu item
"View | Output Window".
Double-click the error
message. The instruction

 sjmp Star

has an invalid label. Change
"Star" to "Start" and rebuild the file (Repeat Step 5).

 12

Step 7: Accelerator Keys and Toolbars.

It is cumbersome to use the menu for the various build and debug commands. As you get more
familiar with Reads51 you may use the toolbars or the shortcut keys to invoke the various commands.

5.2 Debugging with RChipSim51
Step 1: Run "Tutorial02.asm"

Follow the steps 1-5 from Tutorial 5.1 and build the source file.

Step 2: Step Through the Program.
 Click the menu item "Compile | Toggle BUILD / DEBUG Mode".

This loads the target (selected to be RChipSim in Step 1) with the generated HEX file.

Step 3: Open the SFR Window.
Click the menu item "View | SFR Window"
This enables the SFR Watch Window.

Step 4: Open the Memory Watch Window to View Internal Data Memory.

Click the menu
item "View |
Memory
Window"
This enables the
Memory Watch
Window. Inside
the Memory
Window, right-
click and select
"New Memory
Page". Specify
"Internal Data
Page".

Step 5: Single Step.
 Click the menu item "Debug | Step Into".

The current instruction is indicated in the source window by an arrow. Similarly, the status bar (at the
very bottom of the frame)
shows the current
instruction. When the
instruction

 mov r1, #3

is executed and the arrow
points to the following
instruction (clr a) observe
that the internal data
memory page shows that
location 1 (R1) holds the
value 3. Continue to single-
step (press F8) to execute
more instructions. Note how
R1 and ACC change.

Step 6: Set a Breakpoint.
Click on a valid instruction to move the caret (blinking vertical bar of the editor).

13

Click the menu item "Debug | Toggle Breakpoint".
A small blue mark appears next to the instruction.
Now click "Debug | Run to Breakpoint"
This executes all instructions up to the breakpoint. RChipSim51 supports an unlimited number of
breakpoints. You may set other breakpoints and execute the program, stopping at each breakpoint.

Step 7: Clear All Breakpoints.
 Move the caret to each breakpoint line and toggle the breakpoint.
 You may remove all breakpoints with the menu item "Debug | Clear Breakpoints".

Step 8: Run to Cursor.
 First click on a valid instruction to move the caret.

Then, click the menu item "Debug | Run to Cursor"

Step 9: Running and Stopping.
 With no breakpoints set, click the menu item "Debug | Run to Breakpoint".
 Since there are no breakpoints, RChipSim51 executes the instructions.
 Click the menu item "Debug | Break Execution" to stop the execution.
 You may now inspect the registers, single step, etc.

Step 10: Return to the Build Mode.
 Click the menu item "Compile | Toggle RUN/DEBUG Mode".

Note that the source is not editable (is "read only") during debugging. Also note that the watch
windows are closed and the output window is displayed in the build mode.

5.3 Debugging on a Rigel Board
(RROS)

Step 1: Open the file “Tutorial03.asm”.

Step 2: Select Toolchain and Target.

Click on the menu item "Options |
Toolchain/Target Options".
Select "Reads51 V4 toolchain" and
"RROS".

Step 3: Specify Memory Map.

Click on the menu item "Options | Single
File Build Options | Assembly Options".

 Select the tab "Linker Options".
Specify the memory map to be
CODE=8000 and XDATA=8000. Specify
the entry point. Note that the origin of the
program is now 8000h, as specified by the
line "cseg at 8000h", the first line of the
program.

cseg at 8000h ; absolute segment starting at (origin) 0

 Click the menu item "Compile | Clean" before building the source.

It is a good idea to always remove any output files generated by a previous setting. The "Clean"
command deletes these intermediate files. When rebuilt, the new memory map will take effect.

Step 4: Specify Debug Information to be Generated.
Again, using the menu item "Options | Single File Build Options | Assembly Options",

 Check the box "Generate debug information".

 14

Step 5: Open the TTY Window.
 Click the menu item "View | TTY Window".

Press the Reset button on the board.
If you do not observe the monitor prompt, use the menu item "Options | TTY Options" to select an
available port. Unless otherwise stated in the board's hardware manual, set the Baud rate to 9600.

Step 6: Step Through the Program.
Click the menu item "Compile | Toggle BUILD/DEBUG Mode". This assembles the file and loads
the target (selected to be RROS) with the generated HEX file. The Build and Debug modes have
their own layouts. If the TTY window is not
visible, open it as in the previous step.

Step 7: Open the SFR Watch Window.
Click the menu item "View | SFR Window"
This enables the SFR Watch Window.

Step 8: Open the Memory Watch Window to View

Internal Data Memory.
Click the menu item "View | Memory Window"
This enables the Memory Watch Window. Inside the Memory Window.
Right-click and select "New Memory Page". Specify "Internal Data Page".

Step 9: Single Step.
Click the menu item "Debug | Step Into".
The current instruction is indicated in the source window by an arrow. Similarly, the status bar

 (at the very bottom of the frame) shows the current instruction. When the instruction

 mov r1, #3

is executed and the arrow points to the following instruction (clr a) observe that the internal data
memory page shows that location 1 (R1) holds the value 3. Continue to single-step (press F8) to
execute more instructions. Note how R1 and ACC change. Compared to RChipSim51, note that
single stepping takes more time. After each step, the IDE communicates with the board to upload the
watch values. This takes time.

15

Step 10: Run to Cursor.
RROS does not support multiple breakpoints. However, "Run to Cursor" allows you to execute code
up to a given point. This command works as in Tutorial02.

Step 11: Running and Stopping.
The "Running" and "Stopping" commands are not available with the RROS target. When the board
starts "Running" the program it stops inspecting the serial port and the IDE has no mechanism to stop
the execution. If you run the program (without breakpoints) press the Reset button on the board to
stop execution.

5.4 Watching Selected Variables During Debug
Step 1: Open “Tutorial04.asm”.

This tutorial is an extension of
Tutorial02.
Follow the steps in Tutorial02 to single
step through the code.

Step 2: Create a List of Selected Watch
Variables
While in the debug mode, open the SFR
window as in Tutorial02.

 Click on the tab "Watch".
An empty window will appear.
Right-click to invoke the local menu.
Select "Add Watch". Specify the
following:

Name: A
Address: 0xE0
Type: SFR
Width: 1

This is the accumulator. Depending on
your application, you may give more
descriptive names to your variables.

 16

You may find the addresses of the SFRs by clicking the SFR tab and observing their addresses.

Also note that you may hide the “Address Field” and the "Previous Value" field using the local menu.
The values are updated as you step through the program. The values may be displayed in HEX or
decimal, again determined by the local menu choice.

Step 3: Editing the Watch.
 Double-click the name field or column ("A") of the added watch to edit its properties.

Double-click any other field
(column) to change the value.
Add the following watch:

 Name: Count
 Address: 1
 Type: Internal Data
 Width: 1

This is register 1 (R1) which is
decremented in the loop. The
count is initialized to 3 and is
decremented each time the
accumulator is rotated.

At a breakpoint, select the
watch "Count" by clicking on
its name.
Double-click its value field and
change its current value.
Continue single stepping to
observe the effects.

Step 4: Editing the Memory Watch Window Entries.
Open the memory watch window as in Tutorial02 and open the "Internal Data Memory” page.
Again, at a break point, select the row you want to edit by clicking on the first column entry.
Double-click a cell to modify its value.

Step 5: Debugging on the Board.
Repeat the same steps using a Rigel board as in Tutorial03.
Change the program origin to 8000h, and similarly use the
"Options | Single File Build Options | Assembly Options"
menu to change the memory map under the "Linker Options"
tab.

5.5 Simulated I/O (SimIO)
Step 1: Open “Tutorial05.asm”.

Select the RChipSim51 option.
Assemble the program “Tutorial05.asm” as in the previous
tutorials.

Step 2: Open the simulated TTY and IO window (View | TTY

Window).
Click the “SimIO” tab to see the ports buttons/indicators.

Step 3: Remove any breakpoints (Debug | Edit Breakpoints menu)
 Run the program (Debug | Run to Breakpoint).

17

The program runs the endless loop. There are two inputs P1.0 and P1.1. The two outputs, P1.6 and
P1.7 are computed from the inputs using the bitwise AND and OR operations.

Step 4: Momentarily change an input.
 Click and hold the mouse left button on P1.0.

Clicking on a button simulates grounding the corresponding port bit. Note that the ports have internal
pull-up resistors. Their active state is 0 (grounded). P1.0 will remain green, indicating its active state,
as long as you hold the Reset button down.
Also note that P1.6 becomes low, since P1.6 is the AND of P1.0=0 and P1.1=1. Also try clicking on
P1.1.

Step 5: Toggle an input.
Hold the shift key and click on P1.0. P1.0 will remain active when you release the mouse button.
Shift-clicks simulate toggle switches. If you now click P1.0 (without the shift button pressed), the bit
will momentarily be 1. It will resume its active state as soon as you release the button. Toggle P1.0
to remain active (low) and then click on P1.1 to make P1.7 active. (P1.7 is low when both P1.0 and
P1.1 are low.)

Step 6: Terminate the program
Use the “Debug | Stop Debugging” or the “Debug | Break
Execution” commands.

5.6 Simulated Serial I/O (SimTTY)
Step 1: Open “Tutorial06.asm”.

Select the RChipSim51 option.
Assemble “Tutorial06.asm” as in the previous tutorials.

Step 2: Open the simulated TTY and IO window (View | TTY
Window).
Click the “SimTTY” tab to see the ports buttons/indicators.

Step 3: Remove any breakpoints (Debug | Edit Breakpoints menu)
Run the program (Debug | Run to Breakpoint).
The program runs the endless loop. It waits for a character
from the serial port. Once received, it echoes the character
back.

Step 4: Type characters in the SimTTY window
Observe the response.

Step 5: Terminate the program

Use the “Debug | Stop Debugging” or the “Debug | Break Execution” commands.

 18

6 GENERATING HEX FILES
There are several ways to write and compile (or assemble) programs using the Reads51 environment. The
alternatives depend on the target, the source, and whether the code is to be debugged.

1. Target: RROS, rChipSim51, or Embedded ROM.
2. Source: C source, relative assembly source, or absolute assembly source.
3. Debug: On or off.

The memory map of the generated HEX code depends on the linker options, found in the “Assembly Options”
menu dialog box, under the “Linker Options” tag. If you are compiling a project, use the “Project | Project
Build Options | Assembly Options” menu. If you are compiling a single file, use the “Options | Single-File
Build Options | Assembly Options” menu.

The following parameters affect the way the final HEX code is generated:

1. The”Generate debug information” box must be checked if you want to debug the code in the Reads51
environment. Please note that currently Reads51 only supports low-level debugging. That is, single
stepping, etc. are supported only at the assembly level.

2. The CODE origin. This parameter specifies the starting address of the code. Note that this
parameter is meaningful only if relative assembly is used. Since the C compiler output is assembled
using the relative assembler and the linker, this field must also be set correctly for C projects. C
projects must be written to run from the lower 32K of memory. By default, the CODE parameter is set
to 100 (hex) to allow room for the interrupt vectors. Note that the C compiler automatically places a
jump instruction at the reset vector (address 0). Similarly, the C compiler places jump instructions at
the specified addresses when interrupt routines are used.

3. The XDATA origin. This parameter specifies the starting address of the external data segment. The
Reads51 C compiler requires external data memory. By default, XDATA is set to 7000 (hex)

The target you want to run the HEX code on will determine how the parameters will need to be set. If you
intend to place the generated HEX code in ROM, use the same setting as those for the rChipSim51.

6.1 Running Code on a Rigel Board
Most Rigel boards in the RROS mode use 64K of overlapped CODE and XDATA memory. On the Rigel
boards the RROS resides in the lower 32K memory and the 8051 interrupts are redirected to high memory
(RAM) to the range FF00h...FFFFh. It is important to keep in mind that any HEX file downloaded through
RROS is always placed into RAM. More specifically, RROS sets the most-significant-bit of the HEX record
address. This way, HEX records with addresses in the range 8000h to FFFFh are downloaded in the usual

19

manner to their respective addresses. On the other hand, HEX records with addresses in the range 0 to
7FFFh are downloaded to RAM with an added offset of 8000h.

The RUN/MON slide switch used on the Rigel 8051 boards determines the memory map. In the MON
position, the first 32K of memory is mapped to the (RROS) EPROM and the second 32K of memory is
mapped to RAM. In the RUN position, the blocks are swapped, with RAM in the lower 32K of memory, and
the EPROM in the upper 32K of memory. Note that most boards have a red and a green LED. The red LED
is turned on in the MON position while the green LED is turned on in the RUN position. The boards respond
to the RROS monitor commands when the slide switch is in the MON position. With the slide switch in the
RUN position the RROS is unavailable. For more information on the RROS please see the document “RROS
Manual” available from the web at www.rigelcorp.com.

To run a program from low memory on a Rigel board press and hold the reset button while moving the slide
switch from the MON to the RUN position. Verify that the green LED is turned on. Then release the reset
button. The microcontroller responds to the reset by starting the execution at address 0.

In general, you may,

1. Compile your code with a start address in the first 32K block of memory and flip the slide switch to the
RUN position, or,

2. Compile your code with a start address in the second 32K block of memory and run it through the
RROS monitor.

C projects must be compiled with a start address in the first 32K block of memory. Assembly projects may
have a start address in either the first or second block of 32K memory.

6.1.1 Running C Code
The default CODE and XDATA parameters are the best choice for compiling C projects to be executed in the
Reads51 environment. After you compiler the code, switch to the Run / Debug Mode (Compile | Toggle
BUILD / DEBUG Mode). The HEX code is automatically loaded to the board. You are now ready to run the
program and observe its performance using the TTY window. To start execution on the board, move the slide
switch to the RUN position, while keeping the reset button pressed. The microcontroller responds to the
release of the reset button by starting the execution at address 0. Note that the slide switch in the RUN
position also swaps the memory map, so that the RAM (containing the downloaded HEX code) occupies in
the first 32K block, and the RROS EPROM occupies the second 32K block of the memory map. While the
program is running in this fashion, the RROS monitor is unavailable, and thus, this mode does not support
debugging.

6.1.2 Running Assembly Code with Start Address in the 0 to 7FFFh Range
Assembly projects with a start address in the first 32K of memory are downloaded to RAM by the RROS
monitor and the Reads51 IDE when you toggle the IDE mode from BUILD to RUN/DEBUG. To start
execution on the board, move the slide switch to the RUN position, while keeping the reset button pressed.
The microcontroller responds to the release of the reset button by starting the execution at address 0. Note
that the slide switch in the RUN position also swaps the memory map, so that the RAM (containing the
downloaded HEX code) occupies in the first 32K block, and the RROS EPROM occupies the second 32K
block of the memory map. While the program is running in this fashion, the RROS monitor is unavailable, and
thus, this mode does not support debugging. On the other hand, all interrupt vectors are in RAM, which
allows you to run interrupt routines without having to use the remapped vectors.
6.1.2.1 Running Relative Assembly Code (V4 Toolchain)
You may use the default CODE and XDATA parameters for compiling relative assembly projects and switch
the memory map by toggling the MON/RUN slide switch as with running C code. Again, in this case, you
must explicitly place a jump instruction at address 0 (the reset vector) to the entry point of your program. The
following code is from the demo project RelativeAssembly02 in the \Work directory.

cseg at 0 ; cseg is the keyword to start an absolute code segment
ljmp _main

 20

end ; each segment must terminate with an "end" directive

After you compiler the code, switch to the Run / Debug Mode (Compile | Toggle BUILD / DEBUG Mode).
The HEX code is automatically loaded to the board through the RROS monitor. You are now ready to run the
program and observe its performance using the TTY window. To start execution on the board, move the slide
switch to the RUN position, while keeping the reset button pressed.
6.1.2.2 Running Absolute Assembly Code (V1-V3 Toolchain)
The Reads51 V1-V3 Toolchain supports the absolute assembler. The CODE and XDATA parameter have no
effect on the generated HEX code, since the absolute assembler does not use the Reads51 linker. In this
case, the origin of the program is determined by the ORG pseudo op. When writing code with the V1-V3
toolchain, make sure that your code starts from address 0, or better yet, place a jump instruction at address 0
to your application's entry point. You may run the program and observe its performance using the TTY
window.

6.1.3 Running Assembly Code with Start Address in the 8000h to FFFFh Range
Assembly projects with a start address in the upper 32K of memory are downloaded to RAM by the RROS
monitor and the Reads51 IDE when you toggle the IDE mode from BUILD to RUN/DEBUG. These programs
may be run under the supervision of the RROS monitor, and thus, may be debugged. The CODE and
parameter determines the entry point to the code under RROS supervision. That is, when the IDE enters the
RUN/DEBUG mode, the program may be run or debugged by using the commands under the “Debug” menu.
Check the “Generate debug information” box in the Linker tab under the “Assembly Options”. Again, note that
project build options are under the menu “Project | Project Build Options”, whereas build options for
individual files are under the “Option | Single-File Build Options”. When running the programs under RROS
supervision, the slide switch remains in the MON position.

The CODE and XDATA parameters must be in the upper 32K of memory. Note that since CODE and XDATA
spaces overlap, use different values for the two parameters. Consider, for example, code of size a few
kilobytes. Let CODE=8000 (hex) and XDATA=A000 (hex). This allows code to be up to 8KByte (A000h -
8000h = 2000h or 8K). The remaining 24K is then available for XDATA.
6.1.3.1 Running Relative Assembly Code (V4 Toolchain)
The linker groups all code segments and allocates them according to the selected parameters. If you use
more than one code segment, or if you use libraries, the sequence of the various code segments are
determined by the linker. In such cases, it is safer to place a jump instruction at the starting address (CODE
parameters) to the entry point of your program. In simple cases with single code segments, this is not
necessary. Assuming CODE=8000 (hex), the following code may be used:

cseg at 8000h ; cseg is the keyword to start an absolute code segment
ljmp _main ; _main is the entry point to the program
end ; each segment must terminate with an "end" directive

After you compiler the code, switch to the Run / Debug Mode (Compile | Toggle BUILD / DEBUG Mode).
The HEX code is automatically loaded to the board through the RROS monitor. If the program is compiled
with the debug option, you may run the program using the commands under the “Debug” menu.
6.1.3.2 Running Absolute Assembly Code (V1-V3 Toolchain)
The Reads51 V1-V3 Toolchain only supports absolute assembly. The CODE and XDATA parameter have no
effect on the generated HEX code, since the absolute assembler does not use the Reads51 linker. However,
the CODE parameter determines the entry point into the program. That is, the RROS monitor jumps to this
address to start executing the downloaded program when the debug commands are issued. The origin of the
program is determined by the ORG pseudo op. You may run the program and observe its performance using
the TTY window. If the debug option is selected, you may single step or run to the cursor position.

6.2 Reads51 for the Single Chip Mode
The single-chip mode refers to the use of the microcontroller where code memory is the on-chip ROM and the
data memory is the 128 or 256-byte internal RAM (register memory). Note that some microcontrollers have

21

XDATA-type RAM in addition to the register type internal RAM. For instance, the DS89C420 has 1K of
XDATA RAM. Although it sounds like a contradiction, these microcontrollers have on-chip external data
memory! Of course, the external in XDATA is more of a logical designation to differentiate the memory
space. It really is not a physical location specifier. These microcontrollers may run code that use external
memory. The single-chip mode issues discussed below apply only to cases where the data memory is the
128 or 256-byte internal RAM (register memory).

6.2.1 Programming for the Single-Chip Mode
Most of the examples given in the Reads51 work directory assume the microcontroller has access to external
data and code memory. The R-51PB board runs the microcontroller in the single-chip mode. That is, only
on-chip code memory and on-chip data (register) memory are used. A few things should be kept in mind
when running the examples written for the external memory mode.

1. The size of the code memory is limited to that of the on-chip ROM. For example, the Atmel AT89C52
has 8K of code memory. If you try to download a program larger than the size of on-chip ROM, the
rP51 programming software will issue an error.

2. The 8051-type microcontrollers have 128 bytes of internal RAM, while the 8052-type devices and
have 256 bytes of internal RAM. Most of the newer derivatives of the family have 256 bytes of RAM.
This memory is used by the register banks and the bit-addressable memory. In addition, it is also
used to store return addresses during function calls, global variables, local variables, and an
expression stack. The program cannot support large data structures. For example, an array of 256
bytes would use all available memory.

3. The Reads51 C compiler generates code differently for the single-chip mode. (Rather than using
external RAM, only internal RAM is used.) Libraries compiled for the external memory mode cannot
work in the single-chip mode. If you have your own libraries already compiled for the external
memory mode, you must recompile them for the single-chip mode. Many of the libraries in the
include directory are compiled both ways. For example, the serial I/O library (including the functions
such as printf()) is compiled for the external mode cSio51.lib, as well as for the single-chip mode
cSio51i.lib. The suffix ‘i’ implies the “internal memory” mode. Note that, while many examples in the
work directory use cSio51.lib, the example Hello_00 uses cSio51i.lib.

6.2.2 Memory Map for the Single-Chip Mode
The amount of memory set aside for the various uses can be adjusted by selecting the various parameters
within the Reads51 options dialogs.

In the table below, three parameters are used.

SP: This is the initial value of the stack pointer as set in ci0.src in the include directory. You may change

the value of SP in the assignment statement. The default value is 2Fh.

DATA: The linker uses this value to establish the starting address of the data segment. It is specified in the

under the “Linker Options” tab in the “Project build options | Assembly Options” dialog. The default is
20h.

BASE: This is the starting address of the C stack used by the compiler. This stack holds both the local

variables and the expression stack. It is specified under the “Memory” tab in the “Project Build
Options | Compiler Options” dialog. The default is 40h.

Range Use Remarks
0..1Fh MCS-51 register banks

20h..SP not used by the C
compiler

20h..2Fh is bit addressable
memory

SP..DATA call/return stack default SP is 2Fh
DATA..BASE global variables default DATA is 20h

BASE.. local variables and
expression stack default BASE is 40h

 22

The default parameters may be used if global variables are not used. If global variables are used, modify the
parameters DATA and BASE. For example, DATA=40 and BASE=60 allows 32 bytes (60-40=20 hex) of
global variable space.

6.3 Running Code with rChipSim51
rChipSim51 simulates an 8051 which starts execution after reset. That is, execution always starts at address
0. Moreover, rChipSim51 assumes that the code and external data spaces are separate (non-overlapping).
In this respect, generating code to be executed with rChipSim51 is almost always the same as generating
code to be placed in ROM. Care must be taken only if code and external data memory spaces overlap in the
hardware implementation.

Select the rChipSim51 target in the “Options | Toolchain / Target Options”.

6.3.1 Running C Code
The default CODE and XDATA parameters are the best choice for compiling C projects to be executed in the
Reads51 environment. After you compiler the code, switch to the Run / Debug Mode (Compile | Toggle
BUILD / DEBUG Mode). The HEX code is automatically loaded to the chip simulator. You are now ready to
run the program and observe its performance using the SimTTY and SimIO windows. Although you may
debug (e,g, single step) generated assembly code, debugging C projects is not recommended.

6.3.2 Running Relative Assembly Code (V4 Toolchain)
The default CODE and XDATA parameters are also the best choice for compiling relative assembly projects
to be executed in the Reads51 environment. Note that you must explicitly place a jump instruction at the
reset vector to direct the program execution to the entry point of your application. The following code is from
the demo project RelativeAssembly02 in the \Work directory.

cseg at 0 ; cseg is the keyword to start an absolute code segment
ljmp _main ; _main is the application's entry point
end ; each segment must terminate with an "end" directive

After you compiler the code, switch to the Run / Debug Mode (Compile | Toggle BUILD / DEBUG Mode).
The HEX code is automatically loaded to the chip simulator. You are now ready to run the program and
observe its performance using the SimTTY and SimIO windows. You may also debug (e.g. single step) the
code and watch memory and SFRs.

6.3.3 Running Absolute Assembly Code (V1-V3 Toolchain)
The Reads51 V1-V3 Toolchain only supports absolute assembly. The CODE and XDATA parameter have no
effect on the generated HEX code, since the absolute assembler does not use the Reads51 linker. In this
case, the origin of the program is determined by the ORG pseudo op. rChipSim51 simulates an 8051 which
starts execution after reset. That is, execution always starts at address 0. When writing code with the V1-V3
toolchain, make sure that your code starts from address 0, or better yet, place a jump instruction at address 0
to your application's entry point. You may run the program and observe its performance using the SimTTY
and SimIO windows. You may also debug (e.g. single step) the code and watch memory and SFRs.

23

7 Reads51v4 TOOLCHAIN
The Reads51v4 toolchain contains Rigel’s relative assembler which was introduced with Reads51 v4.00
(1999). The IDE views the toolchains selection as is a global choice which affects all build operations of all
open projects or single-file sources. Use the “Options | Toolchain Options” menu to specify the toolchain.
The relative assembler generates Intel HEX records from assembly source files in two steps. First the
assembler generates object files in the Intel OMF-51 format. The object files are said to be relative, or
relocatable, since they are not specified to be placed in any constant memory location in code memory. All
memory-specific information is left out. The decision about where in the memory map the code is to be
placed is made later. In this sense, the object files may be viewed as modules which may be placed
anywhere in the memory map of the 8051. Accordingly, the object files contain the so-called “fixup” records.
These records specify how references to memory locations need to be modified once the final location of the
code is determined.

The second step in generating HEX code is the link step. Here, the memory locations are determined. The
linker combines the object files and performs the fixup operations. The CODE and XDATA start addresses
are perhaps the most important two parameters the linker needs.

7.1 Preprocessor
The macro preprocessor may be used with any type of file, assembly, C, or any other programming language.
Its syntax is C-like. The macro preprocessor supports definitions, macros, and conditional compilation. The
preprocessor directives start with the pound sign (‘#’). The preprocessor may be viewed as the first step in
preparing the source for compilation or assembly. The include files are inserted, the macros are substituted,
and the conditional compilation directives are used to further include or exclude blocks of the source. The
output of the preprocessor is a single source file.

#include “file name”
Inserts the specified file. The file should be in the current directory or on the path.#include <file name>

#include <file name>
Inserts the specified file. The file should be in the current directory, on the path, or in the designated default
include directory. The default include directories are specified by the project options of the current project.

#define
Equates a symbol to another.
For example,

#define MAX 10

defines MAX to be equivalent to 10. The preprocessor replaces all instances of MAX with 10. The define
directive may include arguments. These are called macro definitions. For example, in the following code,

#define ADD(a,b) (a+b)
.
.
X=ADD(acc, 20)
.
.

ADD(acc, 20) is replaced by

X=(acc+20)

#undefine
Removes a previously defined symbol from the list.

 24

#ifdef
Includes the following block of source if the specified symbol is previously defined. Consider, for example,

#define DEBUG
.
.
#ifdef DEBUG
mov a, TMOD
#else
clr a
#endif
.
.

The output of the preprocessor will include the line

mov a, TMOD

but not the line

clr a

because DEBUG was previously defined.

#ifndef
Includes the following block of source if the specified symbol is not previously defined.

#else
This directive is used with the #ifdef directive. The following block of source is included if the specified
symbol is not previously defined.

#endif
Delimits the #ifdef directive or #ifdef/#else pair of directives.

7.2 C Compiler
The C compiler is a SmallC-compatible compiler that generates MCS-51 relative assembly language from C
source. The output is intended to be assembled by the Reads51v4 relative assembler and subsequently be
linked by the Reads51v4 linker.

The C compiler has some of the limitations of SmallC. However, it also introduces some significant
extensions and improvements over standard SmallC.
The C-Compiler’s limitations (SmallC has these same limitations)

1. Structures and Unions are not implemented
2. Only one-dimensional arrays are allowed.
3. Only one level of indirection (pointer) is allowed.
4. Only int and char types are allowed.

Reads51v4 C-Compiler improvements

1. Uses the more modern (ANCI C) function argument definition syntax.
2. Arguments are passed to the functions in the C convention. This allows a variable number of

arguments to be passed on to functions, such as in printf().
3. Supports MCS-51 interrupts.
4. Supports function prototypes.
5. Supports the void type.
6. Uses Rigel’s proprietary macro preprocessor.
7. Supports sfr and sfrbit types.
8. Supports single-chip mode

25

The Appendix titled “A Brief Review of C” gives an overview of the language. Please refer to the various
demos in the work directory for further examples.

7.3 Relative Assembler (Reads51v4 Toolchain)
The relative assembler generates Intel HEX records from assembly source files in two steps. First the
assembler generates object files in the Intel OMF-51 format. The object files are said to be relative, or
relocatable, since they are not specified to be placed in any constant memory location in code memory. All
memory-specific information is left out. The decision about where in the memory map the code is to be
placed is made later. In this sense, the object files may be viewed as modules which may be placed
anywhere in the memory map of the 8051. Accordingly, the object files contain the so-called “fixup” records.
These records specify how references to memory locations need to be modified once the final location of the
code is determined.

7.3.1 Constants
Decimal constants are written as regular numbers.
Hexadecimal constants include numbers 0 to 9 and the letters a to f. They must start with a number and be
terminated by the letter h (or H). Constants are case insensitive, e.g. 0ah is the same as 0aH, 0Ah, or 0AH.
Hexadecimal numbers may also be written in ‘C’ language syntax with a preceding “0x” and no terminating ‘h’.
For example

0x100

is 100h or 256 in decimal.

Binary constants may include only the numbers 0 and 1. They must be terminated by the letter ‘b’ (or ‘B’).

 101b or 101B

ASCII constants are written within single quotes, such as

‘A’.

String constants are written within double quotation marks.

db “A line feed (ASCII 10) and a null (zero) follow this string.”, 10, 0

7.3.2 Expressions
Basic arithmetic and logic operations are supported in a C-like syntax. Parentheses may be used to group
terms of an expression. The parentheses may be nested. The number of such nestings is limited only by the
amount of dynamic memory available.
Binary arithmetic operations: *, /, %, +, -, <<, >>

mov a, #(1+2) ; addition
mov a, #(1-2) ; subtraction
mov a, #(2*2) ; multiplication
mov a, #(8/2) ; division
mov a, #(1%2) ; modulus (remainder)
mov a, #((1+2)*(8-2)) ; use parentheses
mov a, #(1<<2) ; shift left
mov a, #(0x100>>4) ; shift right

Unary arithmetic operations: -

mov a, #-1 ; unary minus

Binary bitwise (Boolean) operations: &, |, ^
mov a, #(1&2) ; bitwise and
mov a, #(1|2) ; bitwise or

 26

mov a, #(1^2) ; bitwise exclusive or (exor)

Unary bitwise (Boolean) operations: ~

mov a, #(~1) ; one’s complement

Binary logic (Boolean) operations: &&, ||

mov a, #(1&&2) ; logic and
mov a, #(1||2) ; logic or

Conditions

mov a, #(1==2) ; equal
mov a, #(1!=2) ; not equal
mov a, #(1<2) ; less than
mov a, #(1<=2) ; less than or equal
mov a, #(1>2) ; greater than
mov a, #(1>=2) ; greater than or equal

Unary logic (Boolean) operations: !|

mov a, #(!1) ; logical not
mov a, #low(0x101*0x3)

here:
 mov a, #high($)
 mov a, #((here&0xFF00)>>8)
 mov a, #(($&0xFF00)>>8)
 mov a, #($&0xFF00)

7.3.3 Functions
The functions low() and high() of Reads51v3.x are preserved for backward compatibility. Note that these may
also written as expressions. Low(N) is the same as (N & 0xFF) and High(N) is the same as (N>>8).
low()
Function: extracts the low byte of a word constant.
Description: Given the word (2-byte value) N, the value of low(N) is equal to the low byte of N.
Example:

LABEL:
 .
 .
 MOV A, LOW(LABEL) ; LABEL is a 16-bit address
 . ; get the low byte of this address

high()
Function: extracts the high byte of a word constant.
Description: Given the word (2-byte value) N, the value of high(N) is equal to the high byte of N.
Example:

LABEL:
 .
 .
 MOV A, HIGH(LABEL) ; LABEL is a 16-bit address
 . ; get the high byte of this address

7.3.4 Pseudo Operations
The relative assembler of Reads51v4.x uses a preprocessor to support include files, macro definitions and
conditional assembly. Most pseudo operations are related to how code segments and modules are defined in

27

the MCS-51 assembly language. Pseudo operation (pseudo ops) are used in assembly language, similar to
machine language instructions. Unlike machine language instructions, pseudo operations do not correspond
to a given processor operation. Rather, pseudo ops are directives to the assembler. Most of the pseudo ops
are related to segment and module definitions. Also, note that some pseudo ops are used in more than one
context.

7.3.5 Constant Definitions
EQU (pseudo op)
Function: constant definition
Description: Assigns symbols to constants. EQU pseudo ops improve the readability of your code by

using more meaningful variable names rather than numerical addresses. It also allows you to
quickly reassign the variables by simply modifying the EQU definition rather than making
changes for all occurrences of the variable.

Example:

COUNT EQU 28h ; internal register 28h is called “COUNT”

 .
 .
MOV COUNT, TL0 ; save count
 .
 .
MOV A, COUNT ; get “count”
 .
 .

7.3.6 Initialized Data Storage
DB (pseudo op)
Function: data storage
Description: The data bytes or strings of ASCI characters are placed starting from the current memory

location. Strings must be delimited with double quotations. Strings may not include the
comma (‘,’) character. Strings and constants may be combined, separated by commas. Data
defined by each DB pseudo op must be 255 bytes or less. For larger data blocks, use two or
more DB pseudo ops.

Note that only data defined in a code segment may be initialized. Internal and external data
is, by the nature of the 8051 architecture, volatile, and thus does not retain initialization
values.

Example:

DB 0,1,2,3,4 ; defines 5 bytes (ov value 0 to 4)
DB “hello” ; defines 5 bytes of value’h’, ‘e’, ‘l’, ‘l’, ‘o’

DB “dog”, 0 ; defines 4 bytes of value ‘d’, ‘o’, ‘g’, 0

; since commas are not allowed within strings,
; the following uses the ASCI value 2Ch instead.

DB “one”, 02Ch, “two” ; the string “one,two”DW

DW (pseudo op)
Function: data storage
Description: The data words or strings of ASCI characters are placed starting from the current memory

location. Each data word occupies two bytes. Each character of the string is kept in two
bytes, the ASCII value of the character in the low byte, and 0 (zero) in the high byte. Strings

 28

must be delimited with double quotations. Strings may not include the comma (‘,’) character.
Strings and constants may be combined, separated by commas. The DB pseudo op is
usually more suitable for defining strings. Data defined by each DW pseudo op must be 255
bytes or less. For larger data blocks, use two or more DW pseudo ops.

Note that only data defined in a code segment may be initialized. Internal and external data
is, by the nature of the 8051 architecture, volatile, and thus does not retain initialization
values.

Example:

DW 1234h,0ABCDh ; defines 2 words (4 bytes)
DW “dog”, 0 ; defines 4 words (8 bytes)

DS (pseudo op)
Function: data storage
Description: DS reserves a block of data. The data block may optionally be initialized to a given value.

Note that only data defined in a code segment may be initialized. Internal and external data
is, by the nature of the 8051 architecture, volatile, and thus does not retain initialization
values.

Example:

DS 10 ; reserves 10 bytes
DS 10 << 0xFF ; reserves 10 bytes and initializes all to 0xFF

DBIT (pseudo op)
Function: bitwise data storage
Description: Reserves a block of bits in internal bit addressable memory. The block of bits may be

referenced by an optional label.
Example:

USER_FLAG:
DBIT 1 ; defines 1 bit at location “USER_FLAG”
IO_COPY:
DB 0x18 ; reserves a block of 24 bits

7.3.7 Code Origin and Offset
AT (pseudo op)
Function: sets absolute segment origin
Description: Absolute segment origins are determined at the source level. The AT pseudo op is used in

conjunction with one of the absolute segment definition directives CSEG, XSEG, DSEG,
ISEG, or BSEG. Segments must be terminated by an END directive.

Example:

CSEG AT 0x2000 ; starts an absolute code segment at address ; 2000h
 .
 .
 .
 .
END

ORG (pseudo op)
Function: sets segment origin or offset
Description: The effect of the ORG directive depends on the type of the current segment. If the current

segment is an absolute segment, then ORG specifies an origin. That is, the address of the

29

instruction that follows. If the current segment is a relative segment, then ORG specifies an
offset from the beginning of the segment.

Note that the absolute address of a relative segment is not determined until the end of the
linking process.

Example:

CSEG ; absolute segment
ORG 0x2000 ; origin at 2000h

has the same effect as
CSEG AT 0x2000END

END (pseudo op)
Function: terminates an absolute or relative segment.
Description: In most cases the assembler is smart enough to end the current segment whenever a new

segment is initiated. In order to avoid ambiguities, it is safer to always terminate a segment
by an END directive.

Example:

SERIAL SEGMENT CODE
RSEG SERIAL ; start relative segment “SERIAL”
.
.
.
.
.
END ; end of current relative segment
CSEG AT 0x2000 ; starts an absolute code segment at address 2000h
.
.
.
.
.
END ; end the absolute segment
RSEG SERIAL ; re-open segment “SERIAL”
.
.
.
.
.
END ; end of relative segment

7.3.8 Absolute Segments
CSEG (pseudo op)
Function: defines an absolute code segment.
Description: CSEG defines and starts a new absolute code segment. Optionally, the absolute address of

the segment origin may be specified using the AT directive.
Example: The following segment contains a simple subroutine that inspects the value in the

accumulator and returns 0 if the accumulator value is even, and 0FFh if odd. The segment is
placed in code memory at address 2800h.

CSEG AT 0x2800 ; start a new code segment

Odd:
 jb acc.0, IsOdd

 30

 clr a
 ret
IsOdd:
 mov a, #0xFF
 ret

END ; end the segment

XSEG (pseudo op)
Function: defines an absolute external data segment.
Description: XSEG defines and starts a new absolute data segment. Optionally, the absolute address of

the segment origin may be specified using the AT directive. Note that only the code segment
may contain initialized data. The segment defined by an XSEG directive may reserve data
bytes or words to be written to or read from during program execution.

Example: The following segment contains a simple subroutine that defines data in external memory. A
separate code segment contains code to modify the data.

XSEG AT 0x8000 ; start a new external data segment

X: DS 1 ; byte variable X
Y: DS 2 ; word variable Y
A: DS 10 ; array A contains 10 bytes

END ; end the segment

CSEG AT 0x2000 ; start a new code segment

mov dptr, #X ; byte variable X
movx a, @dptr ; read X
inc a ; increment X
movx @dptr, a ; write incremented X back to external data

END ; end the segment

DSEG (pseudo op)
Function: defines an absolute internal direct data segment.
Description: DSEG defines and starts a new absolute direct data segment. Note that directly

addressable internal memory of the 8051 architecture includes the 128 internal data
memory and the special function registers. Portions of the internal data space are also
addressable as the register banks or bit addressable.

Optionally, the absolute address of the segment origin may be specified using the AT
directive. Note that only the code segment may contain initialized data. The segment
defined by a DSEG directive may reserve data bytes or words to be written to or read
from during program execution.

Example: The following segment contains a simple subroutine that defines data in direct memory.
A separate code segment contains code to modify the data.

DSEG AT 0x70 ; start a new external data segment

X: DS 1 ; byte variable X
Y: DS 2 ; word variable Y
A: DS 10 ; array A contains 10 bytes

END ; end the segment

CSEG AT 0x2000 ; start a new code segment

31

mov a, X ; read byte variable X

 mov b, #3
 mul ab ; X*3
 mov X, a ; write X*3 back to internal data memory

END ; end the segment

ISEG (pseudo op)
Function: defines an absolute internal indirect data segment.
Description: ISEG defines and starts a new absolute indirect data segment. Note that indirectly

addressable internal memory of the 8051 architecture is the upper 128 internal data memory.

Optionally, the absolute address of the segment origin may be specified using the AT
directive. Note that only the code segment may contain initialized data. The segment defined
by a DSEG directive may reserve data bytes or words to be written to or read from during
program execution.

Example: The following segment contains a simple subroutine that defines data in internal indirect
memory. A separate code segment contains code to modify the data.

ISEG AT 0xF0 ; start a new internal indirect data segment

X: DS 1 ; byte variable X
Y: DS 2 ; word variable Y
A: DS 10 ; array A contains 10 bytes

END ; end the segment

CSEG AT 0x2000 ; start a new code segment

mov r0, #X ; address of X
mov a, @r0 ; read byte variable X
mov b, #3
mul ab ; X*3
mov @r0, a ; write X*3 back to internal data memory

END ; end the segment

BSEG (pseudo op)
Function: defines an absolute bit segment.
Description: BSEG defines and starts a new absolute bit segment. Note that bit addressable memory of

the 8051 architecture is located in internal data memory, bytes 20h to 2Fh.

Optionally, the absolute address of the segment origin may be specified using the AT
directive. Note that only the code segment may contain initialized data. The segment defined
by a BSEG directive may reserve data bits to be written to or read from during program
execution.

Example: The following segment defines bits. The segment is placed in code memory at address
2800h to read from and write to the defined bits.

BSEG AT 0 ; start a new external data segment

X: DBIT 1 ; bit variable X
FLAGS: DBIT 8 ; array FLAGS contains 8 bits

END ; end the segment

 32

CSEG AT 0x2000 ; start a new code segment

clr X ; clear bit X

 mov C, X ; read X into the carry flag
 anl C, (FLAGS+3) ; logic and of X and FLAGS bit 3
 mov (FLAGS(2), C ; write result to FLAGS bit 2

END ; end the segment

7.3.9 Relative Segments
CODE (keyword)
Function: refers to a relative code segment.
Description: CODE identifies the segment as a relative code segment. Code segments are placed in code

memory at link time. The CODE keyword is used in declaring code segments, as below.

Main segment code

Also, the CODE keyword is used in identifying the type of external references. For example,

extern code init_8031 ; function (label)

Example: Refer to the demo project RelativeAssembly01 in the work directory for an example.

XDATA (keyword)
Function: refers to a relative external data segment.
Description: XDATA identifies the segment as a relative external data segment. External data segments

are placed in external data memory at link time. The XDATA keyword is used in declaring
code segments, as below.

Prompt segment xdata

Also, the XDATA keyword is used in identifying the type of external references. For example,

extern xdata sz ; external (RAM) data (symbol)

Example: Refer to the demo project RelativeAssembly01 in the work directory for an example.

DATA (keyword)
Function: refers to a relative internal direct data segment.
Description: DATA identifies the segment as a relative internal direct data segment. Internal direct data

segments are placed in internal memory at link time. The DATA keyword is used in declaring
internal direct data segments, as below.

PWM segment data

Also, the DATA keyword is used in identifying the type of external references. For example,

extern data PWM ; PWM value is saved in internal RAM

Example: Refer to the demo project RelativeAssembly01 in the work directory for an example.

IDATA (keyword)
Function: refers to a relative internal indirect data segment.

33

Description: IDATA identifies the segment as a relative internal indirect data segment. Internal indirect
data segments are placed in internal memory at link time. The IDATA keyword is used in
declaring internal indirect data segments, as below.

PWM segment idata

Also, the IDATA keyword is used in identifying the type of external references. For example,

extern idata PWM ; PWM value is saved in internal RAM

Example: Refer to the demo project RelativeAssembly01 in the work directory for an example.

BIT (keyword)
Function: refers to a relative bit segment.
Description: BIT identifies the segment as a relative bit segment. Bit segments are placed in bit

addressable internal memory at link time. The BIT keyword is used in declaring bit
segments, as below.

FLAG_1 segment bit

Also, the BIT keyword is used in identifying the type of external references. For example,

extern bit FLAG_1

Example: Refer to the demo project RelativeAssembly01 in the work directory for an example.

7.3.10 Modules and Intermodule Linkage
RSEG (pseudo op)
Function: starts a relative segment.
Description: Relative segments must first be declared. Then, the RSEG directive instructs the assembler

to start placing the following instructions in the corresponding segment.
Example: Refer to the demo project RelativeAssembly01 in the work directory for an example.

MainCode segment code

 cseg at 0 ; start an absolute code segment
 ljmp main ; branch to main upon reset
 end ; end segment

rseg MainCode ; rseg is the keyword to start a relative
; segment

main: ; entry upon reset
.
.
.
.
.

end ; terminate segment MainCode

7.3.11 EXTERN IMPORT (pseudo op)
Function: identify labels or symbols which are defined in another module.
Description: EXTERN is used with an identifier of the relative segment type to specify that the given labels

or symbols are defined in other modules. IMPORT is an alternative keyword that is
interpreted as EXTERN. EXTERN (IMPORT) and PUBLIC (EXPORT) pairs provide the
primary mechanism for multimodule programming. They allow symbols (variables) or labels

 34

(code addresses) to be publicized (exported) by one module and imported (by extern) by
another. For example, a function label may be exported (by PUBLIC or EXPORT). This
function may be called from another module, provided that the label is imported (by EXTERN
or IMPORT).

Note that labels and symbols not publicized are not accessible from other modules. These
are said to be “local” or “invisible”. Local symbols allow you to hide the private tedious details
of modules from the rest of the modules.

Example: The syntax is shown below. Refer to the demo project RelativeAssembly01 in the work
directory for a working example.

Module containing serial input/output routines publicize its functions:

public getc ; function (label)
export putc ; function (label)

Other modules may call the functions getc and putc, provided that they import the labels.

extern code getc ; function (label)
extern code putc ; function (label)

7.3.12 PUBLIC (EXPORT)
Function: identify labels or symbols which are publicized to other modules.
Description: PUBLIC is used to specify that the given labels or symbols are defined in the current module

and are made available to other modules. EXPORT is an alternative keyword that is
interpreted as PUBLIC.

EXTERN (IMPORT) and PUBLIC (EXPORT) pairs provide the primary mechanism for
multimodule programming. They allow symbols (variables) or labels (code addresses) to be
publicized (exported) by one module and imported (by extern) by another. For example, a
function label may be exported (by PUBLIC or EXPORT). This function may be called from
another module, provided that the label is imported (by EXTERN or IMPORT). Note that
labels and symbols not publicized are not accessible from other modules. These are said to
be “local” or “invisible”. Local symbols allow you to hide the private tedious details of
modules from the rest of the modules.

Example: The syntax is shown below. Refer to the demo project RelativeAssembly01 in the work
directory for a working example.

Module containing serial input/output routines publicize its functions:

public getc ; function (label)
export putc ; function (label)

Other modules may call the functions getc and putc, provided that they import the labels.

extern code getc ; function (label)
extern code putc ; function (label)

7.4 Linker
Currently, the Reads51v4.x linker is configured to generate executable code for Rigel embedded control
boards. Please refer to the section Relative Assembly Concepts for a discussion about the linker and for an
example.

35

8 rChipSim51
rChipSim51 simulates the functionality of a standard 8051 in software. That is, it implements a virtual 8051
chip. rChipSim51 may be selected as a target on which the compiled programs run. (Use the “Options |
Toolchain / Target Options” menu). rChipSim51 supports the following features:

 Standard Interrupts: T0, T1, EX0, EX1, Serial Port (TI+RI)
 Standard Timers T0 and T1
 Simulated Serial I/O
 Simulated Ports

8.1 SimTTY Window and Serial I/O
rChipSim51 supports simple simulated serial input/outputs through the SimTTY window. The simulated serial
port need not be initialized, nor the Baud rate generated. The bytes placed in the SFR SBUF are sent to the
SimTTY window. Similarly, keystrokes in the SimTTY window are put into SBUF. As in the 8051, SBUF is a
double buffer to support concurrent inputs and outputs.

8.2 SimIO Window and Simulated Ports
The functionality of the compiled program may be observed through the SimIO window. The user may
interact with the ports while the program is running. rChipSim51 reflects the current state of its four ports (P0
through P3). Note that the 8051 ports have pull-up resistors. Any port may be grounded by simply clicking on
the port icon. Such clicks correspond to momentarily grounding the port. That is, the port is grounded as
long as the mouse button is held down. Holding the SHIFT key while clicking on a port simulates toggling the
port state. The ports in the SimIO window do not show the address, data or control signals when accessing
external code or data memory.

 36

9 Reads51 v3.0 TOOLCHAIN
We are no longer actively support the version 3.0 Toolchain. Please use Version 4.2 for all new projects.

9.1 Absolute Assembler
The absolute assembler is a cross assembler for the Intel MCS-51 assembly language used by the
8031/8051 family of microcontrollers. It is intended to be used by the hardware and software products
available from Rigel Corporation. The absolute assembler is a two-pass assembler. Forward references are
resolved during the second pass.

9.1.1 Constants (v3.x)
Constants may be decimal, binary, octal, hexadecimal, or ASCII.
Hexadecimal constants must start with a numerical digit between 0 and 9. They may include numbers or
letters from a to f, but must be terminated by the letter h. Constants are case insensitive.
Octal constants may include the digits 0 to 7. They must be terminated by the letter o.
Binary constants may include only 0s and 1s. They must be terminated by the letter b.
ASCII constants are placed within single quotation marks.
String constants are placed within double quotation marks.
Decimal constants include the digits 0 to 9 and no suffix. If no suffix is present, the constant is assumed to be
decimal.
Examples:

10, 10d, 10D, 0ah, 0aH, 0Ah, 0AH, 12o, 12O, 1010b, 1010B all have the
value 10.
‘A’ has the value 65 or 41h.
db “This is a string.”

9.1.2 Expressions (v3.x)
The four basic arithmetic operations (+ - * /) are supported. Parentheses may be used to group terms of an
expression. The Parentheses may be nested. The number of such nestings is limited only by the amount of
dynamic memory available.
Examples:

ONE EQU 1
TWO EQU 2
 .
 .
MOV A, #((TWO+TWO)*(ONE+TWO)) ; mov a, #12

9.1.3 Functions (v3.x)
There are two built-in functions: high() and low(). They return the high byte and the low byte of a word (two-
byte expression), respectively.
low()
Function: extracts the low byte of a word constant.
Description: Given the word (2-byte value) N, the value of low(N) is equal to the low byte of N.
Example:

LABEL:
 .
 .
 MOV A, LOW(LABEL) ; LABEL is a 16-bit address
 . ; get the low byte of this address

high()
Function: extracts the high byte of a word constant.

37

Description: Given the word (2-byte value) N, the value of high(N) is equal to the high byte of N.
Example:

LABEL:
 .
 .
 MOV A, HIGH(LABEL) ; LABEL is a 16-bit address
 . ; get the high byte of this address

9.1.4 Pseudo Operations
DB (pseudo op)
Function: data storage
Description: The data bytes or strings of ASCI characters are placed starting from the current memory

location. Strings must be delimited with double quotations. Strings may not include the
comma (‘,’) character. Strings and constants may be combined, separated by commas. Data
defined by each DB pseudo op must be 255 bytes or less. For larger data blocks, use two or
more DB pseudo ops.

Note that only data defined in a code segment may be initialized. Internal and external data
is, by the nature of the 8051 architecture, volatile, and thus does not retain initialization
values.

Example:

DB 0,1,2,3,4 ; defines 5 bytes (ov value 0 to 4)
DB “hello” ; defines 5 bytes of value ‘h’,’e’,’l’,’l’,’o’
DB “dog”, 0 ; defines 4 bytes of value ‘d’, ‘o’, ‘g’, 0

; since commas are not allowed within strings, the following
; uses the ASCI value 2Ch instead.

DB “one”, 02Ch, “two” ; the string “one,two”

DW (pseudo op)
Function: data storage
Description: The data words or strings of ASCI characters are placed starting from the current memory

location. Each data word occupies two bytes. Each character of the string is kept in two
bytes, the ASCII value of the character in the low byte, and 0 (zero) in the high byte. Strings
must be delimited with double quotations. Strings may not include the comma (‘,’) character.
Strings and constants may be combined, separated by commas. The DB pseudo op is
usually more suitable for defining strings.

Data defined by each DW pseudo op must be 255 bytes or less. For larger data blocks, use
two or more DW pseudo ops.

Note that only data defined in a code segment may be initialized. Internal and external data
is, by the nature of the 8051 architecture, volatile, and thus does not retain initialization
values.

Example:

DW 1234h,0ABCDh ; defines 2 words (4 bytes)
DW “dog”, 0 ; defines 4 words (8 bytes)

EQU (pseudo op)
Function: constant definition

 38

Description: Assigns symbols to constants. EQU pseudo ops improve the readability of your code by
using more meaningful variable names rather than numerical addresses. It also allows you to
quickly reassign the variables by simply modifying the EQU definition rather than making
changes for all occurrences of the variable.

Example:

COUNT EQU 28h ; internal register 28h is called “COUNT”
MOV COUNT, TL0 ; save count
MOV A, COUNT ; get “count”

 .
#INCLUDE (pseudo op, v3.x)
Function: file linkage.
Description: Opens and inserts the specified file into the source. The file name and extension must be in

the DOS format (name 1 to 8 characters, and the extension, 1 to 3 characters. The file name
and extension are simply given without any quotation marks. The file “filename.ext” must be
found in the current directory or path. The file “filename.ext” will be opened and merged with
the source (assembly) code. Depending on your operating system, the number of include
files may be subject to the DOS parameters BUFFERS and FILES. Up to 8 include file may
be nested. That is, include files may be specified inside include files, stacked up to 8 levels.

Example:

#INCLUDE utils.inc

ORG (pseudo op, v3.x)
Function: sets program origin
Description: The program counter is modified to the specified value. If the ORG pseudo op is placed at

the beginning of the program, it determines the start address of the code.
Example:

ORG 0
LJMP START ; go to start (at 100h)

ORG 23H
LJMP ISR ; go to serial interrupt service routine

ORG 100H
START:
 .
 .

Appendices

 1

APPENDIX A MENU COMMANDS

Menu Item Hot Key Action
Project Menu
New Project Opens a new project.
Open Project Opens an existing project.
Save Project Saves the current project to disk
 Save Project As Saves the current project under a different name

Save Project Copy As Saves a copy of the current project under a different name
Set Project Active Ctrl+F10 Sets project as active when more than one project is open.
Project Build Options
 Compiler Options Opens window to allow you to select compiler options
 Assembly Options Opens window to allow you to select assembly options
Close Project Close current project
Close All Projects Close all open projects
Open Workspace Opens workspace
Save Workspace Saves workspace
Close Workspace Close workspace
Recent Workspaces Shows recently used workspaces
Exit Exits the program

File Menu
New File Ctrl+N Opens a new file.
Open File Ctrl+O Opens an existing file.
Save File Ctrl+S Saves the current file to disk.
Save File As Saves the current file under a different file name.
Save All Saves all open files
Close File Closes the current file.
Print Ctrl+P Prints the current file.
Print Preview Displays the page as it will be printed.
Print Setup Selects printer options.

Module Menu
Module Properties Alt+Enter
Import Module(s) Imports module from another project
Create Module Create a new module
Open Module(s) Open an existing module
Code Wizard Alt+F10 Not active in this release
Save Module(s) Ctrl+S Save current module
Save All Modules Shift+Ctrl+S Saves all modules
Close Module(s) Closes module
Delete Module(s) Deletes module
Cut Module(s) Cut module onto the clipboard
Copy Module(s) Copy module onto the clipboard
Paste Module(s) Paste module from clipboard into a project

Compile Menu
Build F9 Compiles or assembles project
Build and Download Ctrl+F9 Compiles or assembles project and downloads to target
Make Library Saves .obj files in project to the library
Rebuild All Shift+Ctrl+F9 Recompiles or reassembles all files
Clean Deletes all intermediate files of a project.
Toggle BUILD / DEBUG Mode F2 Toggles between Build and Debug Mode of the IDE
Download Hex Downloads HEX file to target

 2

Debug Menu
Run to Breakpoint Ctrl+F8
Run Skip Breakpoints
Run to Cursor
Step Into F8
Step Over Alt+f8
Step Out Shift+F8
Show Next Statement
Stop Debugging Ctrl+F2
Break Execution Shift+Ctrl+F2
Restart
Toggle Breakpoint F5 Allows you to turn on or off selected breakpoints.
Clear Breakpoint Ctrl+F5 Removes all breakpoints from your selected program.
Edit Breakpoints

Edit Menu
Undo Ctrl+Z Restores the document to its state immediately before the

last edit command.
Redo Ctrl+Y
Cut Ctrl+X Cut the highlighted text and places it into the clipboard.
Copy Ctrl+C Copies the highlighted text into the clipboard without

removing it from the file.
Paste Ctrl+V Places the contents of the clipboard into the file at the

current carret position.
Select All Ctrl+A Selects the contents of the entire file.
Find Ctrl+F Finds a string in a file
Find Next F3 Finds the next instance of the string in the file
Replace Ctrl+H Replaces the text with new string
Jump Ctrl+G Jumps to the specified code line

View Menu
Toolbar Toggles on and off the standard toolbar
Status Bar Toggles on and off the status bar
Workbook Mode Toggles on and off the workbook mode
Project Manager Toggles the project window open and closed
TTY Window Toggles the TTY window open and closed
Output Window Toggles the output window open and closed
SFR Window Toggles the SFR window open and closed
Memory Window Toggles the memory window open and closed

Tools Menu
Find in Files Find a string in the files
Run preprocessor
Burn RIC320 EEPROM
Launch rP51
Customize Toolbars Allows you to customize the toolbar

Options Menu
Toolchain / Target Options Allows you to set the toolchain and target options
TTY Options Allows you set the TTY options
Single-File (Projectless) Build Options

Compiler Options
Assembly Options

Editor Options Allows you to set the editor options for font, syntax
highlighting….

Debug Options
 Skip over external code

3

Environment
Work Directory Allows you to set the default work directory
Workbook Icons Toggles on and off the ICONs on the workbook Tabs
Default Settings Clears all settings and sets them back to the default settings

Window Menu
New Window
Cascade Arranges all editor windows in a cascade fashion
Tile Horizontally Tiles all editor windows. This is especially useful to view two

files simultaneously.
Tile Vertically Tiles all editor windows. This is especially useful to view two

files simultaneously.
Arrange Icons You may arrange the minimized edit windows neatly by this

command.
Close All Closes all windows

Help Menu
Help Topics F1 Opens the help files
MCS-51 Overview Opens the help file for the MCS-51 instructions
About Reads51

 4

APPENDIX B TOOLBAR BUTTONS
The following are the Toolbar Buttons, which are specific to the Reads51 IDE.

• New Project
• Open Project
• Save Modified Modules (Shift+Ctrl+S)
• Build Active Project (F9)
• Rebuild Project (Shift+Ctrl+F9)

• MCS-51 Help
• Toggle Bookmark
• Next Bookmark
• Previous Bookmark
• Clear All Bookmarks

• Toggle BUILD / DEBUG Mode (F2) • Run Skip Breakpoint
• Show Next Statement • Run to Breakpoint
• Step Into (F8) • Toggle Breakpoint (F5)
• Step Over (Alt+F8) • Restart
• Step Out (Shift+F8) • Restart Program Execution
• Run to Cursor • Stop Program Execution

• Find String in Multiple Files
• Project
• Output
• TTY
• SFR
• Memory Page

5

APPENDIX C RELATIVE ASSEMBLY CONCEPTS
Relative assembly is sometimes referred to as relocatable assembly. Mechanically speaking, it provides the
basis for modular programming, be it assembly or any high-level language (HLL) such as C. The entire
software is regarded as a collection of modules. Parenthetically, terms such as module and segment are
frequently used in conjunction with software and may mean different things in different contexts.
Each such software module is considered as a building block. Each module may have locally used variables,
invisible to other modules. Eventually, modules must interact. For example, a function (subroutine) in one
module may be called from another module. In this case, the function address (code label) need be
publicized by the module. Similarly, a module may contain data that needs to be accessed by other modules.
In this sense, such data is no longer local and invisible to other modules. Rather, it is global data.
Accordingly, modules that contain global data must make the data addresses (labels) public. Code or data
defined in other modules are said to be external references to the module which needs access to them.
Clearly, when such a module is assembled (by a relative assembler) the result is not readily executable. That
is because the exact value (address) of external references is not known. A closer inspection of a module
reveals that modules contain different types of labels and symbols, primarily depending on their place in the
memory map, or memory space. For example, labels to code and labels to external data need to be
differentiated in the 8051. This also implies a block of code memory, most probably containing machine
instructions, must be treated differently from a block of external data memory, perhaps containing global
variables. Relative assembly takes this distinction a step further: more than a single block of a given type of
memory may be defined as a cohesive unit. Such units are called segments. Again, the term segment may
be somewhat confusing to the first-time users, since the same term is used for the collection of all segments
of the same type. We will clarify this later after we discuss the linker. In the MCS-51 architecture, a module
may contain one or more segments of type code, external data, internal direct data, internal indirect data, or
bit. The keywords CODE, XDATA, DATA, IDATA, and BIT are used to designate these types.

The output of the relative assembler is referred to as an object module. Object modules are usually
composed in binary. They contain the output code from the relative assembler, but lack any spacific address
information. For example, branches to absolute addresses are not completely specified. Instead, the object
modules contain the so-called fixup records. Fixup records list the function and symbols made public by the
current module, as well as external references needed to generate executable code.

Modules of an application are all assembled, yielding a set of object modules. The term “relative” in relative
assembly comes from the fact that any absolute start address (also called offset or base address) may be
assigned to the module. The term “relocatable” also implies this aspect. Once a set of object modules are at
hand, the final step is called linking, and the program that performs this is called a linker. The linker takes the
object modules, reviews the public labels and symbols as well as the external references. Several checks are
performed. For instance, if a module specifies an external reference, say a function label, but none of the
modules have publicized the function label, it becomes impossible to generate executable code. This is often
referred to as the module having “unresolved external references.” Similarly, an ambiguity arises if the same
function (label) is publicized by more than one module. In such a case, it is not clear which function should
actually be called. If no such inconsistency is detected, the linker proceeds by collecting the modules into one
executable program.

Object modules are stacked following precise rules. Typically, first all of the segments of the same name of
each module are stacked together. Then all the modules are scanned and all the segments of the same type
are stacked, keeping the segments with the same name as contiguous blocks. This is done for all five
segment types of the MCS-51 architecture. At the end of this aggregation the total size of each segment type
is known. Moreover, the offset of each segment of each module is known. Usually some size checking is
performed to verify that the segments would fit into the available resources. Finally, the linker locates the
segments. That is, absolute starting addresses are assigned to each segment. Since locating the segments
is a fundamental task in generating final executable code, the linker is sometimes referred to as a
linker/locator. At a minimum, the start address of code and external data memory need to be specified. Once
known, the linker may now compute the absolute address of each segment. This information is subsequently
used, along with the fixup information contained in the object modules, to resolve all external references and
all absolute internal references. This approach to generating executable code is fairly flexible. In fact, almost

 6

all approaches to assembly language programming are supported as special cases. Moreover, keywords and
pseudo ops are provided to support absolute assembly.

For example, it is possible to specify an absolute origin to a module. If the module does not have external
references, then the assembler may generate executable code, just as an absolute assembler. Similarly,
code may consist of a single module with only one segment for each type. In this case, linker simply stacks
the segment types and locates the code into an executable program. On the other hand, a HLL may take
advantage of the features of relative assembly and the multi-module programming support it provides. For
instance, the ‘C’ language keyword extern is simply forwarded to the relative assembler, specifying the
variable to be defined in another module.

Example

; a minimal two-module relative assembly source
; --
; module 1
; --

Routines segment code
Variables segment xdata

; imported labels and symbols (defined in other
; modules but referred to in this module)
extern code putc ; function (label)
extern xdata Ch ; external (RAM) data (symbol)

; code written to an absolute code segment at the reset vector
; the following code is automatically added by the project
; manager it assumes there is a function called “main”

cseg at 0 ; cseg is the keyword to start an absolute
 ; code segment
ljmp main
end ; each segment must terminate with an “end”
 ; directive

; code written to the relative code segment “Routines”

rseg Routines ; rseg is the keyword to start a
 ; relative segment

main: ; this label is exported

mov dptr, #Ch ; address of variable Ch
movx a, @dptr ; get Ch
lcall putc ; putc prints Ch (in acc)
ret ; done
end ; each segment must terminate with an

 ; “end” directive

; --
; module 2
; --
Routines segment code
Variables segment xdata

; declare exported labels and symbols (defined in this
; module and referred to in other modules)
public putc ; function (label)
public Ch ; external (RAM) data (symbol)

7

rseg Variables ; rseg is the keyword to start a relative

 ; segment
Ch: ; this label is exported

ds 1 ; reserve 1 byte for variable Ch
end ; each segment must terminate with an
 ; “end” directive

rseg Routines ; rseg is the keyword to start a
 ; relative segment

putc: ; this label is exported
clr TI ; transmit flag
mov sbuf, a ; send char in acc
jnb TI, $; $ has the value of the current
 ; location pointer
 ; i.e., the current address
clr TI ; transmit flag
ret
end ; each segment must terminate with an
 ; “end” directive

 8

 APPENDIX D THE Reads51 v3 ABSOLUTE ASSEMBLER
When the assembly is successful, three files are automatically created or rewritten in the default directory.
They are the hex file with extension .HEX, the error file with extension .ERR, and the map file with extension
.MAP. All three files have the same file name as the source file. These files are text files and can be viewed
and modified in the editor. The hex file contains the generated machine language code in the INTEL Hex for-
mat. This file, when downloaded, will be converted into true machine language code by the RROS, the ROM
resident firmware.

Reads51 calls the assembler to assemble source code in the editor. The assembler may also be used off
line. The assembler is a cross assembler for the Intel MCS-51 assembly language used by the 8031/8051
family of microcontrollers. The assembler is a two-pass assembler. Forward references are resolved during
the second pass.

Assembly Errors
Attempt to Redefine Symbol or Label
A label or symbol of the same name was previously defined.
Incorrect Symbol or Label
Symbols and labels may only include letters [a-z], or [A-Z], digits [0-9], or the underscore character (_).
Incorrect Operand
The operand type is not permitted in the instruction. For example,

movb R0, R1

is a byte-oriented move, where the operands are word operands.
Attempt to Branch Out of Bounds
The jump point of a branching instruction is beyond reach. Relative jumps and calls are limited to the range
of [-127 to 128] words from the current address. The current address is the address of the first byte of the
following instruction. Note also that target addresses must be even, since all C166 instructions start at even
addresses.
Unresolved Operand(s)
Either a typographical error was made in naming the operand, or the operand is not defined. If the operand is
an expression, one or more of the terms is undefines.
Undecodable Line
This error is a “catch-all” error. Misspelled operation codes will generate this error. As in, for example,

move R0, R1

Note that the assembler continues to read tokens until a valid operation code is detected. Therefore, this
error may be given after the instruction following the “MOVE” instruction. That is, the assembler may assume
that MOVE is a label or a symbol, for example.
Operand(s) Out of Range
This message is generated when the specified operand has a value too large or too small.
Incorrect Operand Types
Some instructions are limited to word, byte, or bit operands. Moreover, a word may be a memory location, a
Special Function Register address or a data byte of type #data16. Sometimes this error is generated when a
symbol is not properly defined.
Incorrect Register Use
An operand which is a constant or a memory type was expected, but a register was found.
Incorrect Constant
A constant or an expression contains an error. For example, hexadecimal numbers must start with a
numerical digit and end with the letter ‘h’ or ‘H’. Expressions involving incorrect constants also generate this
message.

9

Odd or Out-of-Range Address
The specified address is either odd or beyond the reach of a branching instruction. See the error message
“Operand(s) Out of Range.”
Undefined Symbol
A symbol appears in the instruction, but no definition of the symbol is found. Sometimes this message is
generated if an include file containing the symbol definitions was not found, or when a misspelled operation
code is mistaken for a symbol.

 10

APPENDIX E A BRIEF REVIEW OF C
C Language Philosophy
C is by far the High-Level Language (HLL) of choice. C is the first truly portable computer language. There is
a C compiler for virtually all processors. Moreover, C will most likely continue be the dominant HLL for future
generations of processors. This means you may port your code to future hardware with ease. C, being
closer to assembly language, makes it a good language for microcontrollers. Compared to other HLLs, such
as BASIC, you can have finer control over the microcontroller hardware with C.

C forces the code to be more structured. It is not uncommon to see unstructured code with many forward and
backward jumps (among programmers this is referred to as spaghetti code) in assembly or BASIC. C
imposes structure by minimizing or eliminating labels, and by forcing variable declarations.

C is a highly capable language when it comes to making use of previously compiled code. Traditionally
libraries of precompiled code would be linked with C code to produce final executable code. Thus, making
use of external components (external functions or variables, for example) is fundamental to the success of C.
With the appropriate libraries, C may be customized to undertake demanding tasks it was not originally
intended to do. For example, with a good complex number library, C may be used as a number-crunching
platform. This chameleon-like feature of C makes it the language of choice in scientific computing as well as
writing large-scale applications such as computer graphics, word processing, desktop publishing, data base
management, communications programming, and networking.

C is not a language without its critics. The language was designed for writing operating systems. Numerical
work were not top priority issues in designing C. For example, the ANSI standard only requires trigonometric
functions to be provided in double-precision versions, although many compilers, do provide them in single-
precision as well. Similarly, handling multi-dimensional array pointers may seem difficult to the new comer.

Many programmers, when first introduced to C complain that it is a very cryptic language. Granted, it is
easier to write opaque code in C than it is in, say BASIC. Cryptic code usually is a result of trying to shorten
the code. It almost always results in reducing code readability. Although it is possible to write cryptic code in
C it is not necessary.

Finally, C imposes fewer restrictions on the programmer. For example, it is not a strict type checking or strict
range checking language. This gives the programmer more freedom and power, at the expense of added
responsibility to write good crash-proof code. But this is hardly new to assembly programmers. In fact it is
this freedom that makes C a convenient HLL for microcontrollers.

Ingredients of a C Program
A C program consists of functions, variables, and statements. These functions may be user provided, or may
come from one or more Run-Time Libraries (RTLs). A RTL is a collection of precompiled functions that are
linked to your program to produce the final executable code.

Sometimes C is called a function-oriented language. All C instructions must belong to a function. In fact the
entire program is initiated when a special function called “main” is called. When main returns, your program
terminates. The latter must be reviewed in the case of embedded controller code, since embedded controller
code may be required never to terminate.

The traditional “Hello World” program below shows some of the ingredients of the language.

#include <stdio.h>
void main(void){
 printf("\nHello World\n");
}

11

The void preceding ``main'' indicates that function main does not return a value. Similarly, the keyword “void”
which appears inside the set of parentheses immediately following “main” specifies that the function “main”
has no arguments. That is, no parameters are passed to the function.

C string constants are written between double quotation marks. The characters ``\n'' prints a ``new line''
character, which brings the cursor onto the next line.

Code Appearance and Style
The code starts with a series of comments indicating its purpose, as well as its author. It is considered good
programming style to identify and document your work (although, sadly, most people only do this as an
afterthought). Comments can be written anywhere in the code: any characters between /* and */ are ignored
by the compiler and can be used to make the code easier to understand. The use of variable names that are
meaningful within the context of the problem is also a good idea.

Functions
Function Prototypes
Functions are declared by specifying the type and number of arguments they take and by the type of value
they return. Such declarations are called function prototypes. Consider, for example, the prototype of a
successor function which takes an integer and returns the next integer:

int GetNextInteger(int);

Semicolons are used as delimiters to mark the end of the statements. Blocks of statements are put in curly
brackets (also referred to as braces). A collection of statements placed in curly brackets is called a
compound statement, which acts as a statement.

All C statements are defined in free format, i.e., with no specified layout or column assignment. (Old
FORTRAN programmers will remember the significance of column 6 and 7!) Whitespaces (tabs or spaces)
are never significant, with the exception of being a part of a character string. Thus it is possible to write the
“Hello World” program as follows

#include <stdio.h>void main(void){printf("\nHello World\n");}

which sometimes leads to a cryptic appearance.

Variables

Scalars
Variable names are arbitrary (with some compiler-defined maximum length, typically 32 characters). C uses
the following standard variable types:

int integer variable
short short integer
long long integer
float single precision real (floating point) variable
double double precision real (floating point) variable
char character variable (single byte)

C requires the variables to be defined before they are used. The following example illustrates the use of
variables.

main(void){
int nNumber, nSuccessor;

 nNumber=1;
 nSuccessor=GetNextNumber(nNumber);
}

 12

int GetNextInteger(int n){
 return n+1;
}

C is case sensitive, so function and variable names must be case consistent throughout your program. For
example, nNumber and nNUMBER are not the same!.

In this example, variables are defined within the compound statement. Such variables are called local
variables. They may be used only within the compound statement in which they are defined. All local
variables must be defined before any other statements.

Alternatively, you may have global variables, defined outside the compound statements. These are called
global variables. For example,

int nNumber, nSuccessor;

main(void){

 nNumber=1;
 nSuccessor=GetNextNumber(nNumber);
}

int GetNextInteger(int n){
 return n+1;
}

defines the two integers nNumber and nSuccessor as global variables.

In strict C, global variables may only be used in compound statements that appear below their definitions.
Rc66 does not impose this limitation.

Variables may be initialized when defined. Assembly programmers will recognize the similarity between
these definitions and the DB pseudo operation.

int n=0;

not only defines the integer n, but it also sets its initial value to 0.

Pointers
Similar to the BASIC peek and poke functions, C allows direct access to memory. In fact, C provides a very
powerful method of memory access, which makes it the language of choice to write memory intensive
applications.

The approach is based on storing the memory address as a variable. Such a variable is called a pointer (to
memory). Pointers variables (variables which store memory addresses) are declared using the asterisk.
Below, we define an integer n and a pointer to an integer pn.

int n, *pn;

You may extract the memory address of a given variable by the C operator ‘&’. Thus, the statement

pn=&n;

gets the memory address of the integer n and places it into the pointer variable pn. The ampersand operator
is referred to the reference operator.

13

The opposite operation is also needed. The contents of the memory referenced by a pointer is obtained using
the ``*'' operator, referred to as the dereference operator. Provided that pn contains the memory address of
the variable n, *pn has the same value as n. For example,

*pn=5;

is equivalent to

n=5;

Arrays
Arrays of any type can be formed in C. The syntax is simple:

 type name[dim];

For example,

int nADC[16];

defines an array of 16 integers. C arrays start at position 0. The elements of the array occupy adjacent
locations in memory. C treats the name of the array as if it were a pointer to the first element. This is
important in understanding how to do arithmetic with arrays. Thus, if v is an array, *v is the same as v[0],
*(v+1) is the same as v[1]:

Constants

Compiler Directives
You can define constants of any type by using the #define compiler directive. Its syntax is simple--for instance

#define ANGLE_MIN 0
#define ANGLE_MAX 360

would define ANGLE_MIN and ANGLE_MAX to the values 0 and 360, respectively. C distinguishes between
lowercase and uppercase letters in variable names. It is customary to use capital letters in defining global
constants.

Statements
C has six basic classes of statements:

Compound Statements
 Expressions
 Iteration Statements
 Selection Statements
 Jump Statements
 Labeled Statements

Expressions are the basic staple of any programming language. Statements are usually built around one or
more expressions.

Compound Statements
Compound statements collect a set of statements as well as definitions of local variables. Compound
statements play a central role in iteration statements or selection statements when more than one statement
needs to be executed during an iteration, or as a result of a condition. Consider, for example, the iteration
statement

 while(expression) statement

 14

In most cases, the statement of the above while loop needs to perform several tasks. This is easily
accomplished by a compound statement. In effect, a compound statement introduces a set of statements
which, from a syntactic point of view, act as a single statement.

 while(expression)
 {
 statement_1;
 statement_2;
 .
 .
 .
 statement_n;
 }

Expressions
Expressions are the basic staple of any programming language. Perhaps the most commonly used
expression is the assignment expression, such as

 n=5;

C allows many assignment operators besides the simple equal assignment.

 = assignment
+= addition assignment
-= subtraction assignment
*= multiplication assignment
/= division assignment
%= remainder/modulus assignment
&= bitwise AND assignment
|= bitwise OR assignment
^= bitwise exclusive OR assignment
>= right shift assignment

The format “variable operation=” is short for “variable=variable operation”. For example,

 n+=5;

is equivalent to

 n=n+5;

C allows you to put multiple expression in the same statement, separated by a comma. The expressions are
evaluated in left-to-right order. The value of the overall expression is then equal to that of the rightmost
expression.

For example,

n=((k=1),2);

is equivalent to the two assignments

n=2;
k=1;

Similarly, when used as a function argument,

15

f(n,(k=1,k+1),1);

is equivalent to the assignment and function call

k=1;
f(n,2,1);

The comma operator is useful in some cases, such as in iteration statements, but in general, overusing the
comma operator produces unreadable code.

C conditions are also expressions. If an expression is evaluated to be zero, the condition is considered to be
false. Otherwise the condition is true.

Conditions
C conditions are also expressions. If an expression is evaluated to be zero, the condition is considered to be
false. Otherwise the condition is true.

C provides many conditional or logical operations to simplify the evaluation of expressions to be used as
conditions.

== equal to
 != not equal
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to
 && logical and
 || logical or
 ! logical not

For example, the expression

(j==2)

has the value 1 only if j is equal to 2.

Iteration Statements
Iteration statements provide code loops which are structured ways to accomplish repetitive algorithmic
procedures. C supports three basic types of iteration statements: the while statement, the do-while
statement, and the for statement. The syntax of each type of iteration statement is given below.

while(expression) statement
do statement while (expression);
for(expression;expression;expression) statement

Note that the statements may be compound statements, possibly (and often) containing other iteration
statements. The while statement evaluates its expression. The statement is executed if the expression is
nonzero. The process is repeated until the expression is evaluated to be zero. For example,

void main(void){
int n=0;

SendStr(“Hello World\n”);
while(n<10)
 {
 SendStr(“hello again\n”);

 16

 n++;
 }
}

prints “Hello World” followed by ten lines of “hello again.” Note that the statement of the while statement is a
compound statement. This way, the statement accomplishes more than one task: it prints a string, and it
increments n. The latter task is most important, since otherwise the while expression would never be
evaluated as zero, hence resulting in an endless loop.

Endless loops are not all evil though. Neither is the statement always necessary. Consider for example the
while statement

.

.

.
while(P2_0);
.
.
.

where P2_0 is the value of port 2.0. The program will remain at the while loop until the state of the port bit
becomes 0. Note that the program simply waits (or hangs) at the while statement without executing any other
statement.

The do-while statement is similar to the while statement, except that the statement is first executed, and the
expression evaluated afterwards. The above example could be rewritten as,

void main(void){
int n=0;

SendStr(“Hello World\n”);
do
 {
 SendStr(“hello again\n”);
 n++;
 } while(n<10);
}

Perhaps the C for statement is the most often used iteration statements by programmers new to C. This
statement closely resembles the BASIC for statement and the FORTRAN do statement. There are three
expressions in the C for statement: the initialization expression, the condition expression, and the iteration
expression.

for (initialization_expression; condition_expression; iteration_expression) statement

The for statement may be viewed as a special case of the C while statement, equivalent to the following:

 {
 initialization_expression;

 while (condition_expression)
 {
 statement;
 iteration_expression;
 }
 }

17

The above example is now written with the for statement.

void main(void){
int n;

SendStr(“Hello World\n”);
for(n=0; n<10; n++) SendStr(“hello again\n”);
}

Note that the initialization of the iteration counter n is now moved to the for statement. This is not necessary,
however, since any one of the for expressions may actually be null expressions. That is, the following code
has the same effect.

void main(void){
int n=0;

SendStr(“Hello World\n”);
for(; n<10; n++) SendStr(“hello again\n”);
}

It was mentioned that infinite loops may have their use in programming. In addition, C provides a good
mechanism to break out of a loop. The two C keywords “continue” and “break” provide this additional control.
The “continue” command skips the rest of the statements and repeats the iteration. The “break” command
terminates the iteration and exits from the loop. Again, consider our example.

void main(void){
int n=0;

SendStr(“Hello World\n”);
for(; ; n++)
 {
 SendStr(“hello again\n”);
 if(n>=9) break;
 }
}

Here, we have made two changes. First we replaced the old statement with a compound statement. Next,
we removed the condition from the “for” statement. The loop is now terminated when n reaches 9 by the
break command. Note that the iteration limit is 9 since n will go from 0 to 9 and hence print the string 10
times.
As an extreme case, consider

void main(void){
int n=0;

SendStr(“Hello World\n”);
for(; ;)
 {
 SendStr(“hello again\n”);
 if(n>=9) break;
 n++;
 }
}

 18

Although such programming style may at first seem unusual, it is actually practiced by some. Similarly, it is
perfectly legitimate to write

void main(void){
int n;

SendStr(“Hello World\n”);
for(n=0; n<10; n++, SendStr(“hello again\n”);
}

moving the statement into the for expression. The programmer should strive not only for correct code but for
readable code. With attention to variable and function names as well as programming style as illustrated by
these examples, C could become quite a self-documenting programming language.

Selection Statements
There are two types of selection statements in C: the if (and if-else) statement, and the switch statement.

The if and if-else statements have a straightforward structure:

if(expression) statement
if(expression) statement else statement

For example, consider

void main(void){
int n;

for(n=0; n<10; n++)
 if(n%2) SendStr(“odd\n”);
 else SendStr(“Even\n”);
}

This example prints a series of strings (Even, Odd, …). Note that although the syntax of the program is
correct, many programmers prefer to place any statement following an if(expression) inside curly brackets, as
below.

void main(void){
int n;

for(n=0; n<10; n++)
 {
 if(n%2) SendStr(“odd\n”);
 else SendStr(“Even\n”);
 }
}

This improves readability by clearly isolating the statement to be executed when the expression is nonzero.
The switch statement is a powerful construct with the following syntax:

 switch (expression)
 {
 case const_expression_1: statement
 case const_expression_2: statement
 .

19

 .
 default: statement
 }

The expression must evaluate to an integral value. The value is compared to each constant expression. If an
equal constant expression is found, the corresponding statement is executed. Note that the cases are
actually labels. The program will normally continue executing after the statement. Thus you will frequently
find switch statements in the form

switch (expression)
 {
 case const_expression_1: statement;
 break;
 case const_expression_2: statement
 break;
 .
 .
 default: statement
 }

Comments
C comments start with the character pair ‘/*’ and terminate with the pair ’*/’. For example,

/*
the traditional Hello World program
another line of comments
and yet another
*/

/* --- header files --- */
#include <stdio.h>

/* --- main function --- */

void main(void){
 printf("\nHello World\n"); /* print the string */
}
/* --- end of code --- */

illustrates the use of C comments.

Assembly language programmers may find writing 4 extra characters per comment a bit too much, since
anything from a semicolon to the end of the line is a comment in assembly language. C++ introduced a
similar type of comments where a double forward slash denotes the beginning of the comment. As in
assembly language, the comment terminates at the end of the line. Although strict C compilers will not
recognize such comments, Rc66 does. It is then possible to write

/*
 the traditional Hello World program
 another line of comments
 and yet another
*/

// --- main function ---

 20

void main(void){
 SendStr("\nHello World\n"); // print the string
}
// --- end of code ---

Note that the C-type comments are still convenient for multi-line comments.

Standard (Run Time) Libraries
You will notice that the central role is played by the function “printf” (short for print function) which is actually a
library function, rather than a built in C feature. That is, somebody has written the function “printf().” The first
line is a compiler directive instructing the compiler to include the file “stdio.h” in which a prototype of the
function “printf” may be found. The file “stdio.h” is called a header file (thus the extension ‘h’.)The compiler
must also be instructed to link the code with the standard libraries containing the precompiled version of
“printf.” Unlike other HLLs, to include a header file or to link with the proper library is the responsibility of the
programmer. RTL functions such as “printf” are now standard in ANSI C. The K & R textbook lists the content
of these and other standard libraries in its appendix.

The compiler is not an ANSI C compiler. It is written with a graphical Integrated Development System (IDE) in
mind. The compiler does not require function prototypes. Rather, it performs a scan pass over the code to
see which functions are used, and which functions are available. Thus, in the compiler the “Hello” program
becomes

void main(void){
 SendStr("\nHello World\n");
}

Note that the function SendStr() accomplishes the same as “printf,” that is, prints the given string. It is a part
of serial communications routines. SendStr() actually sends the characters out the serial port of the
microcontroller.

References
An excellent textbook on C by two well-known and widely respected authors is:
The C Programming Language -- ANSI C Brian W. C. Kernighan & Dennis M. Ritchie, Prentice Hall, 1988

21

APPENDIX F SmallC
SmallC implements a subset of the K&R C language. It was written by Ron Cain and published in the May
1980 issue of Dr.Dobb’s Journal. Later, James E.Hendrix improved and extended the original SmallC
compiler. He describes the SmallC compiler in the book “The Small-C Handbook”, ISBN 0-8359-7012-4
(1984). Originally, SmallC was written to produce 8080 assembly language code from the C source.
Since its introduction, it has been ported to several processor and microcontrollers. Many of these
implementations are in the public domain. Consequently, SmallC has been a popular choice of
experimenters, educational institutions and embedded systems developers.
It has a few restrictions compared to K&R C or ANSI C:

1. Structures and Unions are not implemented
2. Only one-dimensional arrays are allowed.
3. Only one level of indirection (pointer) is allowed.
4. Only integer and character types are allowed.

The C compiler in Reads51 is a SmallC-compatible compiler that generates MCS-51 relative assembly
language from C source. The output is intended to be assembled by the Reads51v4 relative assembler and
subsequently linked by the Reads51v4 linker.
The C compiler has some of the limitations of SmallC. However, it also introduces some significant
extensions and improvements over standard SmallC.

Reads51v4.2 C Compiler:

1. Uses the more modern (ANCI C) function argument definition syntax.
2. Arguments are passed to the functions in the C convention. This allows a variable number of

arguments to be passed on to functions, such as in printf().
3. Supports MCS-51 interrupts.
4. Supports function prototypes.
5. Supports the void type.
6. Uses Rigel’s proprietary macro preprocessor.
7. Supports sfr and sfr bit types.

 22

APPENDIX G OVERVIEW OF THE MCS-51 INSTRUCTION SET
MCS-51 Addressing Modes and Notation
The addressing mode refers to the various ways operands are specified. For example, move instructions
require a source and a destination, or addition requires two operands.

The MCS-51 Instruction Set

Instruction Function
ACALL addr11 absolute call
ADD A,<src-byte> ADD adds a source byte to the accumulator.
ADDC A,<src-byte> ADDC adds a source byte to the accumulator with carry.
AJMP addr11 Absolute jump
ANL <dest-byte>,<src-byte> Logical AND for byte variables
ANL C,<src-bit> Logical AND for bit variables
CJNE <dest-byte>,<src-byte>,rel Compare and jump if not equal
CLR A Clear accumulator

CLR bit Clear a bit
CPL A Compliment accumulator
CPL bit Compliment accumulator
DA A Decimal adjust accumulator for addition
DEC byte Decrement byte
DIV AB Divide
DJNZ <byte>,<rel-addr> Decrement byte and jump if not zero
INC byte Increment byte
INC DPTR Increment data pointer
JB bit,rel Jump if bit set
JBC bit,rel Jump if bit set and clear bit
JC rel Jump if Carry is set

JMP @A+DPTR Indexed jump
JNB bit,rel Jump if bit not set
JNC rel Jump if Carry is not set
JNZ rel Jump if accumulator is not zero
JZ rel Jump if accumulator is zero
LCALL addr16 Long Call
LJMP addr16 Long Jump
MOV <dest-byte>,<src-byte> Move byte variable
MOV <dest-bit>,<src-bit> Move bit data
MOV DPTR,#data16 Load data pointer with a 16-bit constant
MOVC A,@A+<base reg> Move code byte

MOVX <dest-byte>,<src-byte> External move.
MUL AB Multiply
NOP No operation
ORL <dest-byte>,<src-byte> Logical-OR for byte variables
ORL C,<src-byte> Logical-OR the Carry Bit with a bit variable.
POP direct Pop from stack
PUSH direct Push onto the stack
RET Return from subroutine
RETI Return from interrupt
RL A Rotate accumulator left
RLC A Rotate accumulator left the Carry flag

RR A Rotate accumulator right

23

RRC A Rotate accumulator right through Carry flag
SETB <bit> Set bit
SJMP rel Short jump
SUBB A,<src-byte> Subtract with borrow
SWAP A Swap the two Accumulator nibbles.
XCH A,<byte> Exchange Accumulator with byte variable
XCHD A,@Ri Exchange digit.
XRL <dest-byte>,<src-byte> Logical Exclusive-OR for byte variables

 24

APPENDIX H OMF-51
The OMF-51 (“Object Module Format for the MCS-51) was developed by Intel. It has become the de facto
object file standard for the MCS-51 language. Almost all professional assemblers, compilers, and in-circuit
emulators (ICEs) support the OMF-51 specifications. The specifications are freely available on the Intel web
site as well as other web sites. Refer to the Rigel Corporation web site www.rigelcorp.com Download
Documents to find a copy in PDF format.

